CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA
Quantitative structure-property relationship (QSPR) technique provides a suitable tool to predict the critical micelle concentration (CMC) of Gemini surfactants from their structure descriptors. In this study, a comparative work was conducted to model the CMC property of 211 diverse Gemini surfactan...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Association of the Chemical Engineers of Serbia
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72b2ae903f4d4b029d33db1174d15f5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:72b2ae903f4d4b029d33db1174d15f5e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:72b2ae903f4d4b029d33db1174d15f5e2021-11-10T07:27:43ZCMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA1451-93722217-743410.2298/CICEQ200907048Lhttps://doaj.org/article/72b2ae903f4d4b029d33db1174d15f5e2021-01-01T00:00:00Zhttp://www.doiserbia.nb.rs/img/doi/1451-9372/2021/1451-93722000048L.pdfhttps://doaj.org/toc/1451-9372https://doaj.org/toc/2217-7434Quantitative structure-property relationship (QSPR) technique provides a suitable tool to predict the critical micelle concentration (CMC) of Gemini surfactants from their structure descriptors. In this study, a comparative work was conducted to model the CMC property of 211 diverse Gemini surfactants based on their structural characteristics using linear and non-linear quantitative structure–property relationship models. Least squares model (OLS) and partial least squares (PLS) against k-nearest neighbours regression model (KNN), artificial neural network (ANN) and support vector regression (SVR) have been developed to model the CMC. Molecular descriptors were calculated and screened to remove unsuitable descriptors and improve the learning. Results indicate that the improved performance of support vector regression when the hyper-parameters are optimized using Dragonfly algorithm (SVR-DA) was highly capable of predicting the pCMC (-log CMC) values with an average absolute relative deviation (AARD) of 0.666 and coefficient of determination (R²) of 0.9971 for the global dataset.Laidi MaamarAbdallah el Hadj AbdallahSi-Moussa CherifBenkortebi OthmaneHentabli MohamedHanini SalahAssociation of the Chemical Engineers of Serbiaarticlequantitative structure-property relationshipsurfactantscritical micelle concentrationmodellingmachine learningChemical engineeringTP155-156Chemical industriesHD9650-9663ENChemical Industry and Chemical Engineering Quarterly, Vol 27, Iss 3, Pp 299-312 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
quantitative structure-property relationship surfactants critical micelle concentration modelling machine learning Chemical engineering TP155-156 Chemical industries HD9650-9663 |
spellingShingle |
quantitative structure-property relationship surfactants critical micelle concentration modelling machine learning Chemical engineering TP155-156 Chemical industries HD9650-9663 Laidi Maamar Abdallah el Hadj Abdallah Si-Moussa Cherif Benkortebi Othmane Hentabli Mohamed Hanini Salah CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA |
description |
Quantitative structure-property relationship (QSPR) technique provides a suitable tool to predict the critical micelle concentration (CMC) of Gemini surfactants from their structure descriptors. In this study, a comparative work was conducted to model the CMC property of 211 diverse Gemini surfactants based on their structural characteristics using linear and non-linear quantitative structure–property relationship models. Least squares model (OLS) and partial least squares (PLS) against k-nearest neighbours regression model (KNN), artificial neural network (ANN) and support vector regression (SVR) have been developed to model the CMC. Molecular descriptors were calculated and screened to remove unsuitable descriptors and improve the learning. Results indicate that the improved performance of support vector regression when the hyper-parameters are optimized using Dragonfly algorithm (SVR-DA) was highly capable of predicting the pCMC (-log CMC) values with an average absolute relative deviation (AARD) of 0.666 and coefficient of determination (R²) of 0.9971 for the global dataset. |
format |
article |
author |
Laidi Maamar Abdallah el Hadj Abdallah Si-Moussa Cherif Benkortebi Othmane Hentabli Mohamed Hanini Salah |
author_facet |
Laidi Maamar Abdallah el Hadj Abdallah Si-Moussa Cherif Benkortebi Othmane Hentabli Mohamed Hanini Salah |
author_sort |
Laidi Maamar |
title |
CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA |
title_short |
CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA |
title_full |
CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA |
title_fullStr |
CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA |
title_full_unstemmed |
CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA |
title_sort |
cmc of diverse gemini surfactants modelling using a hybrid approach combining svr-da |
publisher |
Association of the Chemical Engineers of Serbia |
publishDate |
2021 |
url |
https://doaj.org/article/72b2ae903f4d4b029d33db1174d15f5e |
work_keys_str_mv |
AT laidimaamar cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda AT abdallahelhadjabdallah cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda AT simoussacherif cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda AT benkortebiothmane cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda AT hentablimohamed cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda AT haninisalah cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda |
_version_ |
1718440478474502144 |