CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA

Quantitative structure-property relationship (QSPR) technique provides a suitable tool to predict the critical micelle concentration (CMC) of Gemini surfactants from their structure descriptors. In this study, a comparative work was conducted to model the CMC property of 211 diverse Gemini surfactan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Laidi Maamar, Abdallah el Hadj Abdallah, Si-Moussa Cherif, Benkortebi Othmane, Hentabli Mohamed, Hanini Salah
Formato: article
Lenguaje:EN
Publicado: Association of the Chemical Engineers of Serbia 2021
Materias:
Acceso en línea:https://doaj.org/article/72b2ae903f4d4b029d33db1174d15f5e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:72b2ae903f4d4b029d33db1174d15f5e
record_format dspace
spelling oai:doaj.org-article:72b2ae903f4d4b029d33db1174d15f5e2021-11-10T07:27:43ZCMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA1451-93722217-743410.2298/CICEQ200907048Lhttps://doaj.org/article/72b2ae903f4d4b029d33db1174d15f5e2021-01-01T00:00:00Zhttp://www.doiserbia.nb.rs/img/doi/1451-9372/2021/1451-93722000048L.pdfhttps://doaj.org/toc/1451-9372https://doaj.org/toc/2217-7434Quantitative structure-property relationship (QSPR) technique provides a suitable tool to predict the critical micelle concentration (CMC) of Gemini surfactants from their structure descriptors. In this study, a comparative work was conducted to model the CMC property of 211 diverse Gemini surfactants based on their structural characteristics using linear and non-linear quantitative structure–property relationship models. Least squares model (OLS) and partial least squares (PLS) against k-nearest neighbours regression model (KNN), artificial neural network (ANN) and support vector regression (SVR) have been developed to model the CMC. Molecular descriptors were calculated and screened to remove unsuitable descriptors and improve the learning. Results indicate that the improved performance of support vector regression when the hyper-parameters are optimized using Dragonfly algorithm (SVR-DA) was highly capable of predicting the pCMC (-log CMC) values with an average absolute relative deviation (AARD) of 0.666 and coefficient of determination (R²) of 0.9971 for the global dataset.Laidi MaamarAbdallah el Hadj AbdallahSi-Moussa CherifBenkortebi OthmaneHentabli MohamedHanini SalahAssociation of the Chemical Engineers of Serbiaarticlequantitative structure-property relationshipsurfactantscritical micelle concentrationmodellingmachine learningChemical engineeringTP155-156Chemical industriesHD9650-9663ENChemical Industry and Chemical Engineering Quarterly, Vol 27, Iss 3, Pp 299-312 (2021)
institution DOAJ
collection DOAJ
language EN
topic quantitative structure-property relationship
surfactants
critical micelle concentration
modelling
machine learning
Chemical engineering
TP155-156
Chemical industries
HD9650-9663
spellingShingle quantitative structure-property relationship
surfactants
critical micelle concentration
modelling
machine learning
Chemical engineering
TP155-156
Chemical industries
HD9650-9663
Laidi Maamar
Abdallah el Hadj Abdallah
Si-Moussa Cherif
Benkortebi Othmane
Hentabli Mohamed
Hanini Salah
CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA
description Quantitative structure-property relationship (QSPR) technique provides a suitable tool to predict the critical micelle concentration (CMC) of Gemini surfactants from their structure descriptors. In this study, a comparative work was conducted to model the CMC property of 211 diverse Gemini surfactants based on their structural characteristics using linear and non-linear quantitative structure–property relationship models. Least squares model (OLS) and partial least squares (PLS) against k-nearest neighbours regression model (KNN), artificial neural network (ANN) and support vector regression (SVR) have been developed to model the CMC. Molecular descriptors were calculated and screened to remove unsuitable descriptors and improve the learning. Results indicate that the improved performance of support vector regression when the hyper-parameters are optimized using Dragonfly algorithm (SVR-DA) was highly capable of predicting the pCMC (-log CMC) values with an average absolute relative deviation (AARD) of 0.666 and coefficient of determination (R²) of 0.9971 for the global dataset.
format article
author Laidi Maamar
Abdallah el Hadj Abdallah
Si-Moussa Cherif
Benkortebi Othmane
Hentabli Mohamed
Hanini Salah
author_facet Laidi Maamar
Abdallah el Hadj Abdallah
Si-Moussa Cherif
Benkortebi Othmane
Hentabli Mohamed
Hanini Salah
author_sort Laidi Maamar
title CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA
title_short CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA
title_full CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA
title_fullStr CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA
title_full_unstemmed CMC of diverse Gemini surfactants modelling using a hybrid approach combining SVR-DA
title_sort cmc of diverse gemini surfactants modelling using a hybrid approach combining svr-da
publisher Association of the Chemical Engineers of Serbia
publishDate 2021
url https://doaj.org/article/72b2ae903f4d4b029d33db1174d15f5e
work_keys_str_mv AT laidimaamar cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda
AT abdallahelhadjabdallah cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda
AT simoussacherif cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda
AT benkortebiothmane cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda
AT hentablimohamed cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda
AT haninisalah cmcofdiversegeminisurfactantsmodellingusingahybridapproachcombiningsvrda
_version_ 1718440478474502144