Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes

Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sam Benkwitz-Bedford, Martin Palm, Talip Yasir Demirtas, Ville Mustonen, Anne Farewell, Jonas Warringer, Leopold Parts, Danesh Moradigaravand
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://doaj.org/article/72c006c5dc5a4b63803341eca1930dc6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:72c006c5dc5a4b63803341eca1930dc6
record_format dspace
spelling oai:doaj.org-article:72c006c5dc5a4b63803341eca1930dc62021-12-02T19:27:35ZMachine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes2379-507710.1128/mSystems.00346-21https://doaj.org/article/72c006c5dc5a4b63803341eca1930dc62021-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00346-21https://doaj.org/toc/2379-5077 Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains.Sam Benkwitz-BedfordMartin PalmTalip Yasir DemirtasVille MustonenAnne FarewellJonas WarringerLeopold PartsDanesh MoradigaravandAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmSystems, Vol 6, Iss 4 (2021)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Sam Benkwitz-Bedford
Martin Palm
Talip Yasir Demirtas
Ville Mustonen
Anne Farewell
Jonas Warringer
Leopold Parts
Danesh Moradigaravand
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
description Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains.
format article
author Sam Benkwitz-Bedford
Martin Palm
Talip Yasir Demirtas
Ville Mustonen
Anne Farewell
Jonas Warringer
Leopold Parts
Danesh Moradigaravand
author_facet Sam Benkwitz-Bedford
Martin Palm
Talip Yasir Demirtas
Ville Mustonen
Anne Farewell
Jonas Warringer
Leopold Parts
Danesh Moradigaravand
author_sort Sam Benkwitz-Bedford
title Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
title_short Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
title_full Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
title_fullStr Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
title_full_unstemmed Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
title_sort machine learning prediction of resistance to subinhibitory antimicrobial concentrations from escherichia coli genomes
publisher American Society for Microbiology
publishDate 2021
url https://doaj.org/article/72c006c5dc5a4b63803341eca1930dc6
work_keys_str_mv AT sambenkwitzbedford machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
AT martinpalm machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
AT talipyasirdemirtas machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
AT villemustonen machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
AT annefarewell machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
AT jonaswarringer machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
AT leopoldparts machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
AT daneshmoradigaravand machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes
_version_ 1718376503160340480