Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72c006c5dc5a4b63803341eca1930dc6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:72c006c5dc5a4b63803341eca1930dc6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:72c006c5dc5a4b63803341eca1930dc62021-12-02T19:27:35ZMachine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes2379-507710.1128/mSystems.00346-21https://doaj.org/article/72c006c5dc5a4b63803341eca1930dc62021-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00346-21https://doaj.org/toc/2379-5077 Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains.Sam Benkwitz-BedfordMartin PalmTalip Yasir DemirtasVille MustonenAnne FarewellJonas WarringerLeopold PartsDanesh MoradigaravandAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmSystems, Vol 6, Iss 4 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Sam Benkwitz-Bedford Martin Palm Talip Yasir Demirtas Ville Mustonen Anne Farewell Jonas Warringer Leopold Parts Danesh Moradigaravand Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes |
description |
Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries for laboratory strains, yet no study so far has examined the predictive power of genome sequence in natural strains. |
format |
article |
author |
Sam Benkwitz-Bedford Martin Palm Talip Yasir Demirtas Ville Mustonen Anne Farewell Jonas Warringer Leopold Parts Danesh Moradigaravand |
author_facet |
Sam Benkwitz-Bedford Martin Palm Talip Yasir Demirtas Ville Mustonen Anne Farewell Jonas Warringer Leopold Parts Danesh Moradigaravand |
author_sort |
Sam Benkwitz-Bedford |
title |
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes |
title_short |
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes |
title_full |
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes |
title_fullStr |
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes |
title_full_unstemmed |
Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes |
title_sort |
machine learning prediction of resistance to subinhibitory antimicrobial concentrations from escherichia coli genomes |
publisher |
American Society for Microbiology |
publishDate |
2021 |
url |
https://doaj.org/article/72c006c5dc5a4b63803341eca1930dc6 |
work_keys_str_mv |
AT sambenkwitzbedford machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes AT martinpalm machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes AT talipyasirdemirtas machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes AT villemustonen machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes AT annefarewell machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes AT jonaswarringer machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes AT leopoldparts machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes AT daneshmoradigaravand machinelearningpredictionofresistancetosubinhibitoryantimicrobialconcentrationsfromescherichiacoligenomes |
_version_ |
1718376503160340480 |