Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes
Predicting bacterial growth from genome sequences is important for a rapid characterization of strains in clinical diagnostics and to disclose candidate novel targets for anti-infective drugs. Previous studies have dissected the relationship between bacterial growth and genotype in mutant libraries...
Guardado en:
Autores principales: | Sam Benkwitz-Bedford, Martin Palm, Talip Yasir Demirtas, Ville Mustonen, Anne Farewell, Jonas Warringer, Leopold Parts, Danesh Moradigaravand |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72c006c5dc5a4b63803341eca1930dc6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Subinhibitory Concentrations of Clinically-Relevant Antimicrobials Affect Resistance-Nodulation-Division Family Promoter Activity in Acinetobacter baumannii
por: Sonia Prieto Martin Gil, et al.
Publicado: (2021) -
Predicting quantitative traits from genome and phenome with near perfect accuracy
por: Kaspar Märtens, et al.
Publicado: (2016) -
Genomic evolution of antimicrobial resistance in Escherichia coli
por: Pimlapas Leekitcharoenphon, et al.
Publicado: (2021) -
Outer membrane vesicles produced by Burkholderia cepacia cultured with subinhibitory concentrations of ceftazidime enhance pro-inflammatory responses
por: Se Yeon Kim, et al.
Publicado: (2020) -
The Frequency and Antimicrobial Resistance of blaTEM and blaCTX-M Genes in Escherichia coli Isolated From Patients With a Urinary Tract Infection
por: Parisa Shahbazi, et al.
Publicado: (2020)