Saturated Output-Feedback Hybrid Reinforcement Learning Controller for Submersible Vehicles Guaranteeing Output Constraints

In this brief, we propose a new neuro-fuzzy reinforcement learning-based control (NFRLC) structure that allows autonomous underwater vehicles (AUVs) to follow a desired trajectory in large-scale complex environments precisely. The accurate tracking control problem is solved by a unique online NFRLC...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Omid Elhaki, Khoshnam Shojaei, Declan Shanahan, Allahyar Montazeri
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/72c0722e5e6e4738bb62e6cd1c26e1af
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!