Saturated Output-Feedback Hybrid Reinforcement Learning Controller for Submersible Vehicles Guaranteeing Output Constraints
In this brief, we propose a new neuro-fuzzy reinforcement learning-based control (NFRLC) structure that allows autonomous underwater vehicles (AUVs) to follow a desired trajectory in large-scale complex environments precisely. The accurate tracking control problem is solved by a unique online NFRLC...
Guardado en:
Autores principales: | Omid Elhaki, Khoshnam Shojaei, Declan Shanahan, Allahyar Montazeri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72c0722e5e6e4738bb62e6cd1c26e1af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep neural networks for global wildfire susceptibility modelling
por: Guoli Zhang, et al.
Publicado: (2021) -
Aplicación de Técnicas Neuro-Difusas para el Diseño de un Controlador
por: Noriega,A., et al.
Publicado: (2005) -
Effective heart disease prediction system using data mining techniques
por: Singh P, et al.
Publicado: (2018) -
A Novel High-Speed and High-Accuracy Mathematical Modeling Method of Complex MEMS Resonator Structures Based on the Multilayer Perceptron Neural Network
por: Qingsong Li, et al.
Publicado: (2021) -
Graph convolutional and attention models for entity classification in multilayer networks
por: Lorenzo Zangari, et al.
Publicado: (2021)