A Traffic Congestion Prediction Model Based on Dilated-Dense Network
When using the convolutional neural network (CNN) model to predict short-term traffic congestion, due to the convolution pooling operation of the model, part of the data for the information of the target position will be lost, resulting in the decline of the resolution of the output features and the...
Guardado en:
Autores principales: | SHI Min, CAI Shaowei, YI Qingming |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Editorial Office of Journal of Shanghai Jiao Tong University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72c08a795cb84eb6a76afa1b54d9a739 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid Deep Spatio-Temporal Models for Traffic Flow Prediction on Holidays and Under Adverse Weather
por: Wensong Zhang, et al.
Publicado: (2021) -
Load forecasting of hybrid deep learning model considering accumulated temperature effect
por: Haihong Bian, et al.
Publicado: (2022) -
Full-scale self-propulsion simulation with a discretized propeller
por: Zhang Qingshan, et al.
Publicado: (2021) -
A NEW HYBRID DYNAMIC METROPOLITAN TRAIN MODEL
por: Mahla,Ingeborg, et al.
Publicado: (2010) -
A Hybrid Model for Vessel Traffic Flow Prediction Based on Wavelet and Prophet
por: Dangli Wang, et al.
Publicado: (2021)