A vital sign-based prediction algorithm for differentiating COVID-19 versus seasonal influenza in hospitalized patients
Abstract Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have a different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic datas...
Guardado en:
Autores principales: | Naveena Yanamala, Nanda H. Krishna, Quincy A. Hathaway, Aditya Radhakrishnan, Srinidhi Sunkara, Heenaben Patel, Peter Farjo, Brijesh Patel, Partho P. Sengupta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72d1d24198684f2fb4d0f2544abe5ac2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
por: Jiarui Feng, et al.
Publicado: (2021) -
Assessment of physiological signs associated with COVID-19 measured using wearable devices
por: Aravind Natarajan, et al.
Publicado: (2020) -
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
por: Viktor Tóth, et al.
Publicado: (2020) -
The effects of seasons and weather on sleep patterns measured through longitudinal multimodal sensing
por: Stephen M. Mattingly, et al.
Publicado: (2021) -
Advancing digital health: FDA innovation during COVID-19
por: Kushal Kadakia, et al.
Publicado: (2020)