A vital sign-based prediction algorithm for differentiating COVID-19 versus seasonal influenza in hospitalized patients
Abstract Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have a different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic datas...
Enregistré dans:
Auteurs principaux: | Naveena Yanamala, Nanda H. Krishna, Quincy A. Hathaway, Aditya Radhakrishnan, Srinidhi Sunkara, Heenaben Patel, Peter Farjo, Brijesh Patel, Partho P. Sengupta |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/72d1d24198684f2fb4d0f2544abe5ac2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
par: Jiarui Feng, et autres
Publié: (2021) -
Assessment of physiological signs associated with COVID-19 measured using wearable devices
par: Aravind Natarajan, et autres
Publié: (2020) -
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
par: Viktor Tóth, et autres
Publié: (2020) -
The effects of seasons and weather on sleep patterns measured through longitudinal multimodal sensing
par: Stephen M. Mattingly, et autres
Publié: (2021) -
Advancing digital health: FDA innovation during COVID-19
par: Kushal Kadakia, et autres
Publié: (2020)