Semi-Automated Semantic Segmentation of Arctic Shorelines Using Very High-Resolution Airborne Imagery, Spectral Indices and Weakly Supervised Machine Learning Approaches
Precise coastal shoreline mapping is essential for monitoring changes in erosion rates, surface hydrology, and ecosystem structure and function. Monitoring water bodies in the Arctic National Wildlife Refuge (ANWR) is of high importance, especially considering the potential for oil and natural gas e...
Guardado en:
Autores principales: | Bibek Aryal, Stephen M. Escarzaga, Sergio A. Vargas Zesati, Miguel Velez-Reyes, Olac Fuentes, Craig Tweedie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72db7bdf46df409681f6ce7218ef9a4b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
Robust Motor Imagery Classification Using Sparse Representations and Grouping Structures
por: Vangelis P. Oikonomou, et al.
Publicado: (2020) -
Research on Multi-Mission Airborne Weapon Multi-Target Cooperative Optimization Planning Algorithm
por: Chen Yu, Zhang Gongping, Song Tao, Wen Xinling, Ma Zhengxiang, Liu Zhaoyu, Qin Yuxin
Publicado: (2021) -
Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery
por: Mahlatse Kganyago, et al.
Publicado: (2021) -
On ideal sumset labelled graphs
por: Mathai,Jincy P., et al.
Publicado: (2021)