Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared

CuTe nanocrystals may be used as an alternative to noble metals for plasmonics but requires understanding of the atomic structure and the influence of defects. Here Willhammaret al. use electron tomography to reveal the distribution of vacancies in the nanocrystals and their effect on the optical pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tom Willhammar, Kadir Sentosun, Stefanos Mourdikoudis, Bart Goris, Mert Kurttepeli, Marnik Bercx, Dirk Lamoen, Bart Partoens, Isabel Pastoriza-Santos, Jorge Pérez-Juste, Luis M. Liz-Marzán, Sara Bals, Gustaaf Van Tendeloo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/72e4cd5418c2489d9c0e7100e3212a40
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:72e4cd5418c2489d9c0e7100e3212a40
record_format dspace
spelling oai:doaj.org-article:72e4cd5418c2489d9c0e7100e3212a402021-12-02T17:06:19ZStructure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared10.1038/ncomms149252041-1723https://doaj.org/article/72e4cd5418c2489d9c0e7100e3212a402017-03-01T00:00:00Zhttps://doi.org/10.1038/ncomms14925https://doaj.org/toc/2041-1723CuTe nanocrystals may be used as an alternative to noble metals for plasmonics but requires understanding of the atomic structure and the influence of defects. Here Willhammaret al. use electron tomography to reveal the distribution of vacancies in the nanocrystals and their effect on the optical properties.Tom WillhammarKadir SentosunStefanos MourdikoudisBart GorisMert KurttepeliMarnik BercxDirk LamoenBart PartoensIsabel Pastoriza-SantosJorge Pérez-JusteLuis M. Liz-MarzánSara BalsGustaaf Van TendelooNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tom Willhammar
Kadir Sentosun
Stefanos Mourdikoudis
Bart Goris
Mert Kurttepeli
Marnik Bercx
Dirk Lamoen
Bart Partoens
Isabel Pastoriza-Santos
Jorge Pérez-Juste
Luis M. Liz-Marzán
Sara Bals
Gustaaf Van Tendeloo
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
description CuTe nanocrystals may be used as an alternative to noble metals for plasmonics but requires understanding of the atomic structure and the influence of defects. Here Willhammaret al. use electron tomography to reveal the distribution of vacancies in the nanocrystals and their effect on the optical properties.
format article
author Tom Willhammar
Kadir Sentosun
Stefanos Mourdikoudis
Bart Goris
Mert Kurttepeli
Marnik Bercx
Dirk Lamoen
Bart Partoens
Isabel Pastoriza-Santos
Jorge Pérez-Juste
Luis M. Liz-Marzán
Sara Bals
Gustaaf Van Tendeloo
author_facet Tom Willhammar
Kadir Sentosun
Stefanos Mourdikoudis
Bart Goris
Mert Kurttepeli
Marnik Bercx
Dirk Lamoen
Bart Partoens
Isabel Pastoriza-Santos
Jorge Pérez-Juste
Luis M. Liz-Marzán
Sara Bals
Gustaaf Van Tendeloo
author_sort Tom Willhammar
title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_short Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_full Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_fullStr Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_full_unstemmed Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
title_sort structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/72e4cd5418c2489d9c0e7100e3212a40
work_keys_str_mv AT tomwillhammar structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT kadirsentosun structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT stefanosmourdikoudis structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT bartgoris structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT mertkurttepeli structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT marnikbercx structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT dirklamoen structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT bartpartoens structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT isabelpastorizasantos structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT jorgeperezjuste structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT luismlizmarzan structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT sarabals structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
AT gustaafvantendeloo structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared
_version_ 1718381681119854592