Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
CuTe nanocrystals may be used as an alternative to noble metals for plasmonics but requires understanding of the atomic structure and the influence of defects. Here Willhammaret al. use electron tomography to reveal the distribution of vacancies in the nanocrystals and their effect on the optical pr...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72e4cd5418c2489d9c0e7100e3212a40 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:72e4cd5418c2489d9c0e7100e3212a40 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:72e4cd5418c2489d9c0e7100e3212a402021-12-02T17:06:19ZStructure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared10.1038/ncomms149252041-1723https://doaj.org/article/72e4cd5418c2489d9c0e7100e3212a402017-03-01T00:00:00Zhttps://doi.org/10.1038/ncomms14925https://doaj.org/toc/2041-1723CuTe nanocrystals may be used as an alternative to noble metals for plasmonics but requires understanding of the atomic structure and the influence of defects. Here Willhammaret al. use electron tomography to reveal the distribution of vacancies in the nanocrystals and their effect on the optical properties.Tom WillhammarKadir SentosunStefanos MourdikoudisBart GorisMert KurttepeliMarnik BercxDirk LamoenBart PartoensIsabel Pastoriza-SantosJorge Pérez-JusteLuis M. Liz-MarzánSara BalsGustaaf Van TendelooNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tom Willhammar Kadir Sentosun Stefanos Mourdikoudis Bart Goris Mert Kurttepeli Marnik Bercx Dirk Lamoen Bart Partoens Isabel Pastoriza-Santos Jorge Pérez-Juste Luis M. Liz-Marzán Sara Bals Gustaaf Van Tendeloo Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared |
description |
CuTe nanocrystals may be used as an alternative to noble metals for plasmonics but requires understanding of the atomic structure and the influence of defects. Here Willhammaret al. use electron tomography to reveal the distribution of vacancies in the nanocrystals and their effect on the optical properties. |
format |
article |
author |
Tom Willhammar Kadir Sentosun Stefanos Mourdikoudis Bart Goris Mert Kurttepeli Marnik Bercx Dirk Lamoen Bart Partoens Isabel Pastoriza-Santos Jorge Pérez-Juste Luis M. Liz-Marzán Sara Bals Gustaaf Van Tendeloo |
author_facet |
Tom Willhammar Kadir Sentosun Stefanos Mourdikoudis Bart Goris Mert Kurttepeli Marnik Bercx Dirk Lamoen Bart Partoens Isabel Pastoriza-Santos Jorge Pérez-Juste Luis M. Liz-Marzán Sara Bals Gustaaf Van Tendeloo |
author_sort |
Tom Willhammar |
title |
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared |
title_short |
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared |
title_full |
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared |
title_fullStr |
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared |
title_full_unstemmed |
Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared |
title_sort |
structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/72e4cd5418c2489d9c0e7100e3212a40 |
work_keys_str_mv |
AT tomwillhammar structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT kadirsentosun structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT stefanosmourdikoudis structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT bartgoris structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT mertkurttepeli structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT marnikbercx structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT dirklamoen structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT bartpartoens structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT isabelpastorizasantos structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT jorgeperezjuste structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT luismlizmarzan structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT sarabals structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared AT gustaafvantendeloo structureandvacancydistributionincoppertelluridenanoparticlesinfluenceplasmonicactivityinthenearinfrared |
_version_ |
1718381681119854592 |