Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution
Summary: To achieve net-zero emissions, a particular interest has been raised in the electrochemical evolution of H2 by using catalysts. Considering the complexity of designing catalyst, we demonstrate a data-driven strategy to develop optimized catalysts for H2 evolution. This work starts by collec...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/72e7cc013ec844c8a363cf87bd77aede |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:72e7cc013ec844c8a363cf87bd77aede |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:72e7cc013ec844c8a363cf87bd77aede2021-11-26T04:37:55ZData-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution2589-004210.1016/j.isci.2021.103430https://doaj.org/article/72e7cc013ec844c8a363cf87bd77aede2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589004221014012https://doaj.org/toc/2589-0042Summary: To achieve net-zero emissions, a particular interest has been raised in the electrochemical evolution of H2 by using catalysts. Considering the complexity of designing catalyst, we demonstrate a data-driven strategy to develop optimized catalysts for H2 evolution. This work starts by collecting data of Pt/carbon catalysts, and applying machine learning to reveal the importance of ranking various features. The algorithms reveal that the Pt content and Pt size have the greatest impact on the catalyst overpotentials. Following the data-driven analysis, a space-confined method is used to fabricate the size-controllable Pt nanoclusters that anchor on nitrogen-doped (N-doped) mesoporous carbon nanosheet network. The obtained catalysts use less platinum and exhibit better catalytic activity than current commercial catalysts in alkaline electrolytes. Moreover, the data formed in this work can be used as feedback to further improve the data-driven model, thereby accelerating the development of high-performance catalysts.Anhui ZhengYuxuan WangFangfei ZhangChunnian HeShan ZhuNaiqin ZhaoElsevierarticleChemical reactionCatalysisMaterials scienceComputational method in materials scienceScienceQENiScience, Vol 24, Iss 12, Pp 103430- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Chemical reaction Catalysis Materials science Computational method in materials science Science Q |
spellingShingle |
Chemical reaction Catalysis Materials science Computational method in materials science Science Q Anhui Zheng Yuxuan Wang Fangfei Zhang Chunnian He Shan Zhu Naiqin Zhao Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution |
description |
Summary: To achieve net-zero emissions, a particular interest has been raised in the electrochemical evolution of H2 by using catalysts. Considering the complexity of designing catalyst, we demonstrate a data-driven strategy to develop optimized catalysts for H2 evolution. This work starts by collecting data of Pt/carbon catalysts, and applying machine learning to reveal the importance of ranking various features. The algorithms reveal that the Pt content and Pt size have the greatest impact on the catalyst overpotentials. Following the data-driven analysis, a space-confined method is used to fabricate the size-controllable Pt nanoclusters that anchor on nitrogen-doped (N-doped) mesoporous carbon nanosheet network. The obtained catalysts use less platinum and exhibit better catalytic activity than current commercial catalysts in alkaline electrolytes. Moreover, the data formed in this work can be used as feedback to further improve the data-driven model, thereby accelerating the development of high-performance catalysts. |
format |
article |
author |
Anhui Zheng Yuxuan Wang Fangfei Zhang Chunnian He Shan Zhu Naiqin Zhao |
author_facet |
Anhui Zheng Yuxuan Wang Fangfei Zhang Chunnian He Shan Zhu Naiqin Zhao |
author_sort |
Anhui Zheng |
title |
Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution |
title_short |
Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution |
title_full |
Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution |
title_fullStr |
Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution |
title_full_unstemmed |
Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution |
title_sort |
data-driven design and controllable synthesis of pt/carbon electrocatalysts for h2 evolution |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/72e7cc013ec844c8a363cf87bd77aede |
work_keys_str_mv |
AT anhuizheng datadrivendesignandcontrollablesynthesisofptcarbonelectrocatalystsforh2evolution AT yuxuanwang datadrivendesignandcontrollablesynthesisofptcarbonelectrocatalystsforh2evolution AT fangfeizhang datadrivendesignandcontrollablesynthesisofptcarbonelectrocatalystsforh2evolution AT chunnianhe datadrivendesignandcontrollablesynthesisofptcarbonelectrocatalystsforh2evolution AT shanzhu datadrivendesignandcontrollablesynthesisofptcarbonelectrocatalystsforh2evolution AT naiqinzhao datadrivendesignandcontrollablesynthesisofptcarbonelectrocatalystsforh2evolution |
_version_ |
1718409848415059968 |