A Relational Formulation of Quantum Mechanics

Abstract Non-relativistic quantum mechanics is reformulated here based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. This idea, combining with the emphasis tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jianhao M. Yang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/72ed22025ba24999bbd90c8f4f5b9b57
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:72ed22025ba24999bbd90c8f4f5b9b57
record_format dspace
spelling oai:doaj.org-article:72ed22025ba24999bbd90c8f4f5b9b572021-12-02T15:07:45ZA Relational Formulation of Quantum Mechanics10.1038/s41598-018-31481-82045-2322https://doaj.org/article/72ed22025ba24999bbd90c8f4f5b9b572018-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-31481-8https://doaj.org/toc/2045-2322Abstract Non-relativistic quantum mechanics is reformulated here based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. This idea, combining with the emphasis that measurement of a quantum system is a bidirectional interaction process, leads to a new framework to calculate the probability of an outcome when measuring a quantum system. In this framework, the most basic variable is the relational probability amplitude. Probability is calculated as summation of weights from the alternative measurement configurations. The properties of quantum systems, such as superposition and entanglement, are manifested through the rules of counting the alternatives. Wave function and reduced density matrix are derived from the relational probability amplitude matrix. They are found to be secondary mathematical tools that equivalently describe a quantum system without explicitly calling out the reference system. Schrödinger Equation is obtained when there is no entanglement in the relational probability amplitude matrix. Feynman Path Integral is used to calculate the relational probability amplitude, and is further generalized to formulate the reduced density matrix. In essence, quantum mechanics is reformulated as a theory that describes physical systems in terms of relational properties.Jianhao M. YangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-19 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jianhao M. Yang
A Relational Formulation of Quantum Mechanics
description Abstract Non-relativistic quantum mechanics is reformulated here based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. This idea, combining with the emphasis that measurement of a quantum system is a bidirectional interaction process, leads to a new framework to calculate the probability of an outcome when measuring a quantum system. In this framework, the most basic variable is the relational probability amplitude. Probability is calculated as summation of weights from the alternative measurement configurations. The properties of quantum systems, such as superposition and entanglement, are manifested through the rules of counting the alternatives. Wave function and reduced density matrix are derived from the relational probability amplitude matrix. They are found to be secondary mathematical tools that equivalently describe a quantum system without explicitly calling out the reference system. Schrödinger Equation is obtained when there is no entanglement in the relational probability amplitude matrix. Feynman Path Integral is used to calculate the relational probability amplitude, and is further generalized to formulate the reduced density matrix. In essence, quantum mechanics is reformulated as a theory that describes physical systems in terms of relational properties.
format article
author Jianhao M. Yang
author_facet Jianhao M. Yang
author_sort Jianhao M. Yang
title A Relational Formulation of Quantum Mechanics
title_short A Relational Formulation of Quantum Mechanics
title_full A Relational Formulation of Quantum Mechanics
title_fullStr A Relational Formulation of Quantum Mechanics
title_full_unstemmed A Relational Formulation of Quantum Mechanics
title_sort relational formulation of quantum mechanics
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/72ed22025ba24999bbd90c8f4f5b9b57
work_keys_str_mv AT jianhaomyang arelationalformulationofquantummechanics
AT jianhaomyang relationalformulationofquantummechanics
_version_ 1718388393912565760