Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>

ABSTRACT Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kulika Chomvong, Daniel I. Benjamin, Daniel K. Nomura, Jamie H. D. Cate
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/72f14fd08662418da6611c95a8a13cf4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:72f14fd08662418da6611c95a8a13cf4
record_format dspace
spelling oai:doaj.org-article:72f14fd08662418da6611c95a8a13cf42021-11-15T15:51:43ZCellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>10.1128/mBio.00855-172150-7511https://doaj.org/article/72f14fd08662418da6611c95a8a13cf42017-09-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00855-17https://doaj.org/toc/2150-7511ABSTRACT Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 (PFK2), H+-plasma membrane ATPase (PMA1), and glucose sensors (SNF3 and RGT2) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions. IMPORTANCE Living cells are fine-tuned through evolution to thrive in their native environments. Genome alterations to create organisms for specific biotechnological applications may result in unexpected and undesired phenotypes. We used a minimal synthetic biological system in the yeast Saccharomyces cerevisiae as a platform to reveal novel connections between carbon sensing, starvation conditions, and energy homeostasis.Kulika ChomvongDaniel I. BenjaminDaniel K. NomuraJamie H. D. CateAmerican Society for MicrobiologyarticlePMA1cellobioseglucose sensorsmetabolomicsMicrobiologyQR1-502ENmBio, Vol 8, Iss 4 (2017)
institution DOAJ
collection DOAJ
language EN
topic PMA1
cellobiose
glucose sensors
metabolomics
Microbiology
QR1-502
spellingShingle PMA1
cellobiose
glucose sensors
metabolomics
Microbiology
QR1-502
Kulika Chomvong
Daniel I. Benjamin
Daniel K. Nomura
Jamie H. D. Cate
Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>
description ABSTRACT Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 (PFK2), H+-plasma membrane ATPase (PMA1), and glucose sensors (SNF3 and RGT2) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions. IMPORTANCE Living cells are fine-tuned through evolution to thrive in their native environments. Genome alterations to create organisms for specific biotechnological applications may result in unexpected and undesired phenotypes. We used a minimal synthetic biological system in the yeast Saccharomyces cerevisiae as a platform to reveal novel connections between carbon sensing, starvation conditions, and energy homeostasis.
format article
author Kulika Chomvong
Daniel I. Benjamin
Daniel K. Nomura
Jamie H. D. Cate
author_facet Kulika Chomvong
Daniel I. Benjamin
Daniel K. Nomura
Jamie H. D. Cate
author_sort Kulika Chomvong
title Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>
title_short Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>
title_full Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>
title_fullStr Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>
title_full_unstemmed Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in <italic toggle="yes">Saccharomyces cerevisiae</italic>
title_sort cellobiose consumption uncouples extracellular glucose sensing and glucose metabolism in <italic toggle="yes">saccharomyces cerevisiae</italic>
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/72f14fd08662418da6611c95a8a13cf4
work_keys_str_mv AT kulikachomvong cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminitalictoggleyessaccharomycescerevisiaeitalic
AT danielibenjamin cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminitalictoggleyessaccharomycescerevisiaeitalic
AT danielknomura cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminitalictoggleyessaccharomycescerevisiaeitalic
AT jamiehdcate cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminitalictoggleyessaccharomycescerevisiaeitalic
_version_ 1718427343362457600