Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics

Abstract While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for severa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mario C. Vebber, Nicole A. Rice, Jaclyn L. Brusso, Benoît H. Lessard
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/72f45c89bc724d0184a77b14bfcd469f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:72f45c89bc724d0184a77b14bfcd469f
record_format dspace
spelling oai:doaj.org-article:72f45c89bc724d0184a77b14bfcd469f2021-12-02T16:31:48ZVariance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics10.1038/s41598-021-94704-52045-2322https://doaj.org/article/72f45c89bc724d0184a77b14bfcd469f2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94704-5https://doaj.org/toc/2045-2322Abstract While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for several applications, particularly low-power electronics and rechargeable batteries, are lacking in literature. Alternatively, silicon phthalocyanines (R2-SiPc) are inexpensive, industrially scalable organic semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs composed of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2-SiPc). While changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2-SiPc active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable characteristic for industrial production. All PTB7:(3BS)2-SiPc devices produced high open circuit voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to their fullerene-based counterpart.Mario C. VebberNicole A. RiceJaclyn L. BrussoBenoît H. LessardNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Mario C. Vebber
Nicole A. Rice
Jaclyn L. Brusso
Benoît H. Lessard
Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics
description Abstract While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for several applications, particularly low-power electronics and rechargeable batteries, are lacking in literature. Alternatively, silicon phthalocyanines (R2-SiPc) are inexpensive, industrially scalable organic semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs composed of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2-SiPc). While changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2-SiPc active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable characteristic for industrial production. All PTB7:(3BS)2-SiPc devices produced high open circuit voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to their fullerene-based counterpart.
format article
author Mario C. Vebber
Nicole A. Rice
Jaclyn L. Brusso
Benoît H. Lessard
author_facet Mario C. Vebber
Nicole A. Rice
Jaclyn L. Brusso
Benoît H. Lessard
author_sort Mario C. Vebber
title Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics
title_short Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics
title_full Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics
title_fullStr Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics
title_full_unstemmed Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics
title_sort variance-resistant ptb7 and axially-substituted silicon phthalocyanines as active materials for high-voc organic photovoltaics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/72f45c89bc724d0184a77b14bfcd469f
work_keys_str_mv AT mariocvebber varianceresistantptb7andaxiallysubstitutedsiliconphthalocyaninesasactivematerialsforhighvocorganicphotovoltaics
AT nicolearice varianceresistantptb7andaxiallysubstitutedsiliconphthalocyaninesasactivematerialsforhighvocorganicphotovoltaics
AT jaclynlbrusso varianceresistantptb7andaxiallysubstitutedsiliconphthalocyaninesasactivematerialsforhighvocorganicphotovoltaics
AT benoithlessard varianceresistantptb7andaxiallysubstitutedsiliconphthalocyaninesasactivematerialsforhighvocorganicphotovoltaics
_version_ 1718383880759672832