A general and flexible method for signal extraction from single-cell RNA-seq data
Single-cell RNA sequencing (scRNA-seq) data provides information on transcriptomic heterogeneity within cell populations. Here, Risso et al develop ZINB-WaVE for low-dimensional representations of scRNA-seq data that account for zero inflation, over-dispersion, and the count nature of the data.
Guardado en:
Autores principales: | Davide Risso, Fanny Perraudeau, Svetlana Gribkova, Sandrine Dudoit, Jean-Philippe Vert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73054fb866f04910a8b3edfde47347e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: A general and flexible method for signal extraction from single-cell RNA-seq data
por: Davide Risso, et al.
Publicado: (2019) -
Ensemble dimensionality reduction and feature gene extraction for single-cell RNA-seq data
por: Xiaoxiao Sun, et al.
Publicado: (2020) -
Detection and removal of barcode swapping in single-cell RNA-seq data
por: Jonathan A. Griffiths, et al.
Publicado: (2018) -
Latent periodic process inference from single-cell RNA-seq data
por: Shaoheng Liang, et al.
Publicado: (2020) -
A web server for comparative analysis of single-cell RNA-seq data
por: Amir Alavi, et al.
Publicado: (2018)