FLLL32 Triggers Caspase-Mediated Apoptotic Cell Death in Human Oral Cancer Cells by Regulating the p38 Pathway
Oral cancer is the most common oral malignant tumor in Taiwan. Although there exist several methods for treatment, oral cancer still has a poor prognosis and high recurrence. FLLL32, a synthetic analog of curcumin with antitumor activity, is currently known to induce melanoma apoptosis and inhibit t...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73138206ef8c41b99a8a4eaca41c9186 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Oral cancer is the most common oral malignant tumor in Taiwan. Although there exist several methods for treatment, oral cancer still has a poor prognosis and high recurrence. FLLL32, a synthetic analog of curcumin with antitumor activity, is currently known to induce melanoma apoptosis and inhibit tumor growth in various cancers. However, few studies have examined the mechanisms of FLLL32 in oral cancer. In this study, we explore whether FLLL32 induces apoptosis in oral cancer. We determined that FLLL32 can inhibit the cell viability of oral cancer. Next, we analyzed the effect of FLLL32 on the cell cycle of oral cancer cells and observed that the proportion of cells in the G2/M phase was increased. Additionally, annexin-V/PI double staining revealed that FLLL32 induced apoptosis in oral cancer cells. Data from the Human Apoptosis Array revealed that FLLL32 increases the expression of cleaved caspase-3 and heme oxygenase-1 (HO-1). FLLL32 activates proteins such as caspase-8, caspase-9, caspase-3, PARP, and mitogen-activated protein kinases (MAPKs) in apoptosis-related molecular mechanisms. Moreover, by using MAPK inhibitors, we suggest that FLLL32 induces the apoptosis of oral cancer cells through the p38 MAPK signaling pathway. In conclusion, our findings suggest that FLLL32 is a potential therapeutic agent for oral cancer by inducing caspase-dependent apoptosis and HO-1 activation through the p38 pathway. We believe that the activation of HO-1 and the p38 pathway by FLLL32 represent potential targets for further research in oral cancer. |
---|