Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods
Abstract Plasma fibrinogen is an important coagulation factor and susceptible to post-translational modification by oxidants. We have reported impairment of fibrin polymerization after exposure to hypochlorous acid (HOCl) and increased methionine oxidation of fibrinogen in severely injured trauma pa...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7330f566b0e941b3a178951811845285 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7330f566b0e941b3a178951811845285 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7330f566b0e941b3a1789518118452852021-12-02T18:49:21ZTracking oxidation-induced alterations in fibrin clot formation by NMR-based methods10.1038/s41598-021-94401-32045-2322https://doaj.org/article/7330f566b0e941b3a1789518118452852021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94401-3https://doaj.org/toc/2045-2322Abstract Plasma fibrinogen is an important coagulation factor and susceptible to post-translational modification by oxidants. We have reported impairment of fibrin polymerization after exposure to hypochlorous acid (HOCl) and increased methionine oxidation of fibrinogen in severely injured trauma patients. Molecular dynamics suggests that methionine oxidation poses a mechanistic link between oxidative stress and coagulation through protofibril lateral aggregation by disruption of AαC domain structures. However, experimental evidence explaining how HOCl oxidation impairs fibrinogen structure and function has not been demonstrated. We utilized polymerization studies and two dimensional-nuclear magnetic resonance spectrometry (2D-NMR) to investigate the hypothesis that HOCl oxidation alters fibrinogen conformation and T2 relaxation time of water protons in the fibrin gels. We have demonstrated that both HOCl oxidation of purified fibrinogen and addition of HOCl-oxidized fibrinogen to plasma fibrinogen solution disrupted lateral aggregation of protofibrils similarly to competitive inhibition of fibrin polymerization using a recombinant AαC fragment (AαC 419–502). DOSY NMR measurement of fibrinogen protons demonstrated that the diffusion coefficient of fibrinogen increased by 17.4%, suggesting the oxidized fibrinogen was more compact and fast motion in the prefibrillar state. 2D-NMR analysis reflected that water protons existed as bulk water (T2) and intermediate water (T2i) in the control plasma fibrin. Bulk water T2 relaxation time was increased twofold and correlated positively with the level of HOCl oxidation. However, T2 relaxation of the oxidized plasma fibrin gels was dominated by intermediate water. Oxidation induced thinner fibers, in which less water is released into the bulk and water fraction in the hydration shell was increased. We have confirmed that T2 relaxation is affected by the self-assembly of fibers and stiffness of the plasma fibrin gel. We propose that water protons can serve as an NMR signature to probe oxidative rearrangement of the fibrin clot.Wai-Hoe LauNathan J. WhiteTsin-Wen YeoRussell L. GruenKonstantin PervushinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Wai-Hoe Lau Nathan J. White Tsin-Wen Yeo Russell L. Gruen Konstantin Pervushin Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods |
description |
Abstract Plasma fibrinogen is an important coagulation factor and susceptible to post-translational modification by oxidants. We have reported impairment of fibrin polymerization after exposure to hypochlorous acid (HOCl) and increased methionine oxidation of fibrinogen in severely injured trauma patients. Molecular dynamics suggests that methionine oxidation poses a mechanistic link between oxidative stress and coagulation through protofibril lateral aggregation by disruption of AαC domain structures. However, experimental evidence explaining how HOCl oxidation impairs fibrinogen structure and function has not been demonstrated. We utilized polymerization studies and two dimensional-nuclear magnetic resonance spectrometry (2D-NMR) to investigate the hypothesis that HOCl oxidation alters fibrinogen conformation and T2 relaxation time of water protons in the fibrin gels. We have demonstrated that both HOCl oxidation of purified fibrinogen and addition of HOCl-oxidized fibrinogen to plasma fibrinogen solution disrupted lateral aggregation of protofibrils similarly to competitive inhibition of fibrin polymerization using a recombinant AαC fragment (AαC 419–502). DOSY NMR measurement of fibrinogen protons demonstrated that the diffusion coefficient of fibrinogen increased by 17.4%, suggesting the oxidized fibrinogen was more compact and fast motion in the prefibrillar state. 2D-NMR analysis reflected that water protons existed as bulk water (T2) and intermediate water (T2i) in the control plasma fibrin. Bulk water T2 relaxation time was increased twofold and correlated positively with the level of HOCl oxidation. However, T2 relaxation of the oxidized plasma fibrin gels was dominated by intermediate water. Oxidation induced thinner fibers, in which less water is released into the bulk and water fraction in the hydration shell was increased. We have confirmed that T2 relaxation is affected by the self-assembly of fibers and stiffness of the plasma fibrin gel. We propose that water protons can serve as an NMR signature to probe oxidative rearrangement of the fibrin clot. |
format |
article |
author |
Wai-Hoe Lau Nathan J. White Tsin-Wen Yeo Russell L. Gruen Konstantin Pervushin |
author_facet |
Wai-Hoe Lau Nathan J. White Tsin-Wen Yeo Russell L. Gruen Konstantin Pervushin |
author_sort |
Wai-Hoe Lau |
title |
Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods |
title_short |
Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods |
title_full |
Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods |
title_fullStr |
Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods |
title_full_unstemmed |
Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods |
title_sort |
tracking oxidation-induced alterations in fibrin clot formation by nmr-based methods |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7330f566b0e941b3a178951811845285 |
work_keys_str_mv |
AT waihoelau trackingoxidationinducedalterationsinfibrinclotformationbynmrbasedmethods AT nathanjwhite trackingoxidationinducedalterationsinfibrinclotformationbynmrbasedmethods AT tsinwenyeo trackingoxidationinducedalterationsinfibrinclotformationbynmrbasedmethods AT russelllgruen trackingoxidationinducedalterationsinfibrinclotformationbynmrbasedmethods AT konstantinpervushin trackingoxidationinducedalterationsinfibrinclotformationbynmrbasedmethods |
_version_ |
1718377567355928576 |