A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome

Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nathan Ing, Fangjin Huang, Andrew Conley, Sungyong You, Zhaoxuan Ma, Sergey Klimov, Chisato Ohe, Xiaopu Yuan, Mahul B. Amin, Robert Figlin, Arkadiusz Gertych, Beatrice S. Knudsen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/734bffa0c8884685a89d36929e58ac7d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:734bffa0c8884685a89d36929e58ac7d
record_format dspace
spelling oai:doaj.org-article:734bffa0c8884685a89d36929e58ac7d2021-12-02T15:05:38ZA novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome10.1038/s41598-017-13196-42045-2322https://doaj.org/article/734bffa0c8884685a89d36929e58ac7d2017-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-13196-4https://doaj.org/toc/2045-2322Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signature. The trained algorithms classify endothelial cells and generate a vascular area mask (VAM) in H&E micrographs of clear cell renal cell carcinoma (ccRCC) cases from The Cancer Genome Atlas (TCGA). Quantification of VAMs led to the discovery of 9 vascular features (9VF) that predicted disease-free-survival in a discovery cohort (n = 64, HR = 2.3). Correlation analysis and information gain identified a 14 gene expression signature related to the 9VF’s. Two generalized linear models with elastic net regularization (14VF and 14GT), based on the 14 genes, separated independent cohorts of up to 301 cases into good and poor disease-free survival groups (14VF HR = 2.4, 14GT HR = 3.33). For the first time, we successfully applied digital image analysis and targeted machine learning to develop prognostic, morphology-based, gene expression signatures from the vascular architecture. This novel morphogenomic approach has the potential to improve previous methods for biomarker development.Nathan IngFangjin HuangAndrew ConleySungyong YouZhaoxuan MaSergey KlimovChisato OheXiaopu YuanMahul B. AminRobert FiglinArkadiusz GertychBeatrice S. KnudsenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Nathan Ing
Fangjin Huang
Andrew Conley
Sungyong You
Zhaoxuan Ma
Sergey Klimov
Chisato Ohe
Xiaopu Yuan
Mahul B. Amin
Robert Figlin
Arkadiusz Gertych
Beatrice S. Knudsen
A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
description Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signature. The trained algorithms classify endothelial cells and generate a vascular area mask (VAM) in H&E micrographs of clear cell renal cell carcinoma (ccRCC) cases from The Cancer Genome Atlas (TCGA). Quantification of VAMs led to the discovery of 9 vascular features (9VF) that predicted disease-free-survival in a discovery cohort (n = 64, HR = 2.3). Correlation analysis and information gain identified a 14 gene expression signature related to the 9VF’s. Two generalized linear models with elastic net regularization (14VF and 14GT), based on the 14 genes, separated independent cohorts of up to 301 cases into good and poor disease-free survival groups (14VF HR = 2.4, 14GT HR = 3.33). For the first time, we successfully applied digital image analysis and targeted machine learning to develop prognostic, morphology-based, gene expression signatures from the vascular architecture. This novel morphogenomic approach has the potential to improve previous methods for biomarker development.
format article
author Nathan Ing
Fangjin Huang
Andrew Conley
Sungyong You
Zhaoxuan Ma
Sergey Klimov
Chisato Ohe
Xiaopu Yuan
Mahul B. Amin
Robert Figlin
Arkadiusz Gertych
Beatrice S. Knudsen
author_facet Nathan Ing
Fangjin Huang
Andrew Conley
Sungyong You
Zhaoxuan Ma
Sergey Klimov
Chisato Ohe
Xiaopu Yuan
Mahul B. Amin
Robert Figlin
Arkadiusz Gertych
Beatrice S. Knudsen
author_sort Nathan Ing
title A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_short A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_full A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_fullStr A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_full_unstemmed A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
title_sort novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/734bffa0c8884685a89d36929e58ac7d
work_keys_str_mv AT nathaning anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT fangjinhuang anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT andrewconley anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sungyongyou anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT zhaoxuanma anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sergeyklimov anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT chisatoohe anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT xiaopuyuan anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT mahulbamin anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT robertfiglin anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT arkadiuszgertych anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT beatricesknudsen anovelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT nathaning novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT fangjinhuang novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT andrewconley novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sungyongyou novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT zhaoxuanma novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT sergeyklimov novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT chisatoohe novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT xiaopuyuan novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT mahulbamin novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT robertfiglin novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT arkadiuszgertych novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
AT beatricesknudsen novelmachinelearningapproachrevealslatentvascularphenotypespredictiveofrenalcanceroutcome
_version_ 1718388772800823296