A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signa...
Guardado en:
Autores principales: | Nathan Ing, Fangjin Huang, Andrew Conley, Sungyong You, Zhaoxuan Ma, Sergey Klimov, Chisato Ohe, Xiaopu Yuan, Mahul B. Amin, Robert Figlin, Arkadiusz Gertych, Beatrice S. Knudsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/734bffa0c8884685a89d36929e58ac7d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
POSSIBILITIES AND RESULTS OF USING VISUAL LATENT FORMS IN METHOD OF METAPHOR DERIVING
por: Sergey A. Afonsky
Publicado: (2018) -
Tuberculosis latente
por: Véjar M,Leonardo
Publicado: (2012) -
Tuberculosis latente
por: Rodríguez D,Juan C
Publicado: (2012) -
Double-stranded DNA induces a prothrombotic phenotype in the vascular endothelium
por: Erik Gaitzsch, et al.
Publicado: (2017) -
An investigation of latent fingerprinting techniques
por: Ritika Dhaneshwar, et al.
Publicado: (2021)