A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome
Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signa...
Enregistré dans:
Auteurs principaux: | Nathan Ing, Fangjin Huang, Andrew Conley, Sungyong You, Zhaoxuan Ma, Sergey Klimov, Chisato Ohe, Xiaopu Yuan, Mahul B. Amin, Robert Figlin, Arkadiusz Gertych, Beatrice S. Knudsen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/734bffa0c8884685a89d36929e58ac7d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
POSSIBILITIES AND RESULTS OF USING VISUAL LATENT FORMS IN METHOD OF METAPHOR DERIVING
par: Sergey A. Afonsky
Publié: (2018) -
Tuberculosis latente
par: Véjar M,Leonardo
Publié: (2012) -
Tuberculosis latente
par: Rodríguez D,Juan C
Publié: (2012) -
Double-stranded DNA induces a prothrombotic phenotype in the vascular endothelium
par: Erik Gaitzsch, et autres
Publié: (2017) -
An investigation of latent fingerprinting techniques
par: Ritika Dhaneshwar, et autres
Publié: (2021)