A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome

Abstract Gene expression signatures are commonly used as predictive biomarkers, but do not capture structural features within the tissue architecture. Here we apply a 2-step machine learning framework for quantitative imaging of tumor vasculature to derive a spatially informed, prognostic gene signa...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Nathan Ing, Fangjin Huang, Andrew Conley, Sungyong You, Zhaoxuan Ma, Sergey Klimov, Chisato Ohe, Xiaopu Yuan, Mahul B. Amin, Robert Figlin, Arkadiusz Gertych, Beatrice S. Knudsen
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/734bffa0c8884685a89d36929e58ac7d
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!