Multi-View Data Augmentation to Improve Wound Segmentation on 3D Surface Model by Deep Learning
Wound area segmentation really progressed with the emergence of deep learning, due to its robustness in uncontrolled lighting and no need to design hand-crafted features but two limits have still to be overcome: firstly, its performance relies on the size and quality of the training dataset in the m...
Guardado en:
Autores principales: | R. Niri, E. Gutierrez, H. Douzi, Y. Lucas, S. Treuillet, B. Castaneda, I. Hernandez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/734c0af4b81546ea83d4c1125658ac77 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Modular U-Net for Automated Segmentation of X-Ray Tomography Images in Composite Materials
por: João P. C. Bertoldo, et al.
Publicado: (2021) -
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) -
Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images
por: Motohisa Fukuda, et al.
Publicado: (2021) -
Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning
por: Cao Duong Ly, et al.
Publicado: (2022) -
Medical Augmentation (Med-Aug) for Optimal Data Augmentation in Medical Deep Learning Networks
por: Justin Lo, et al.
Publicado: (2021)