Pathway dynamics can delineate the sources of transcriptional noise in gene expression
Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular sta...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/734cb2fb4f304d4cb7a4c4331c142621 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:734cb2fb4f304d4cb7a4c4331c142621 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:734cb2fb4f304d4cb7a4c4331c1426212021-11-22T15:39:20ZPathway dynamics can delineate the sources of transcriptional noise in gene expression10.7554/eLife.693242050-084Xe69324https://doaj.org/article/734cb2fb4f304d4cb7a4c4331c1426212021-10-01T00:00:00Zhttps://elifesciences.org/articles/69324https://doaj.org/toc/2050-084XSingle-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells (‘intrinsic noise’) from variability across the population (‘extrinsic noise’). Here, we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that ‘pathway-reporters’ compare favourably to the well-known, but often difficult to implement, dual-reporter method.Lucy HamMarcel JacksonMichael PH StumpfeLife Sciences Publications Ltdarticlegene expressionstochasticityextrinsic noisenoise decompositionMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
gene expression stochasticity extrinsic noise noise decomposition Medicine R Science Q Biology (General) QH301-705.5 |
spellingShingle |
gene expression stochasticity extrinsic noise noise decomposition Medicine R Science Q Biology (General) QH301-705.5 Lucy Ham Marcel Jackson Michael PH Stumpf Pathway dynamics can delineate the sources of transcriptional noise in gene expression |
description |
Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells (‘intrinsic noise’) from variability across the population (‘extrinsic noise’). Here, we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that ‘pathway-reporters’ compare favourably to the well-known, but often difficult to implement, dual-reporter method. |
format |
article |
author |
Lucy Ham Marcel Jackson Michael PH Stumpf |
author_facet |
Lucy Ham Marcel Jackson Michael PH Stumpf |
author_sort |
Lucy Ham |
title |
Pathway dynamics can delineate the sources of transcriptional noise in gene expression |
title_short |
Pathway dynamics can delineate the sources of transcriptional noise in gene expression |
title_full |
Pathway dynamics can delineate the sources of transcriptional noise in gene expression |
title_fullStr |
Pathway dynamics can delineate the sources of transcriptional noise in gene expression |
title_full_unstemmed |
Pathway dynamics can delineate the sources of transcriptional noise in gene expression |
title_sort |
pathway dynamics can delineate the sources of transcriptional noise in gene expression |
publisher |
eLife Sciences Publications Ltd |
publishDate |
2021 |
url |
https://doaj.org/article/734cb2fb4f304d4cb7a4c4331c142621 |
work_keys_str_mv |
AT lucyham pathwaydynamicscandelineatethesourcesoftranscriptionalnoiseingeneexpression AT marceljackson pathwaydynamicscandelineatethesourcesoftranscriptionalnoiseingeneexpression AT michaelphstumpf pathwaydynamicscandelineatethesourcesoftranscriptionalnoiseingeneexpression |
_version_ |
1718417500610232320 |