Resolving resolution dimensions in triangulated categories

Let T{\mathcal{T}} be a triangulated category with a proper class ξ\xi of triangles and X{\mathcal{X}} be a subcategory of T{\mathcal{T}}. We first introduce the notion of X{\mathcal{X}}-resolution dimensions for a resolving subcategory of T{\mathcal{T}} and then give some descriptions of objects h...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ma Xin, Zhao Tiwei
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/734d471faeec407e8b816d04385e0357
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let T{\mathcal{T}} be a triangulated category with a proper class ξ\xi of triangles and X{\mathcal{X}} be a subcategory of T{\mathcal{T}}. We first introduce the notion of X{\mathcal{X}}-resolution dimensions for a resolving subcategory of T{\mathcal{T}} and then give some descriptions of objects having finite X{\mathcal{X}}-resolution dimensions. In particular, we obtain Auslander-Buchweitz approximations for these objects. As applications, we construct adjoint pairs for two kinds of inclusion functors and characterize objects having finite X{\mathcal{X}}-resolution dimensions in terms of a notion of ξ\xi -cellular towers. We also construct a new resolving subcategory from a given resolving subcategory and reformulate some known results.