Resolving resolution dimensions in triangulated categories
Let T{\mathcal{T}} be a triangulated category with a proper class ξ\xi of triangles and X{\mathcal{X}} be a subcategory of T{\mathcal{T}}. We first introduce the notion of X{\mathcal{X}}-resolution dimensions for a resolving subcategory of T{\mathcal{T}} and then give some descriptions of objects h...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/734d471faeec407e8b816d04385e0357 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let T{\mathcal{T}} be a triangulated category with a proper class ξ\xi of triangles and X{\mathcal{X}} be a subcategory of T{\mathcal{T}}. We first introduce the notion of X{\mathcal{X}}-resolution dimensions for a resolving subcategory of T{\mathcal{T}} and then give some descriptions of objects having finite X{\mathcal{X}}-resolution dimensions. In particular, we obtain Auslander-Buchweitz approximations for these objects. As applications, we construct adjoint pairs for two kinds of inclusion functors and characterize objects having finite X{\mathcal{X}}-resolution dimensions in terms of a notion of ξ\xi -cellular towers. We also construct a new resolving subcategory from a given resolving subcategory and reformulate some known results. |
---|