Resolving resolution dimensions in triangulated categories

Let T{\mathcal{T}} be a triangulated category with a proper class ξ\xi of triangles and X{\mathcal{X}} be a subcategory of T{\mathcal{T}}. We first introduce the notion of X{\mathcal{X}}-resolution dimensions for a resolving subcategory of T{\mathcal{T}} and then give some descriptions of objects h...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ma Xin, Zhao Tiwei
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/734d471faeec407e8b816d04385e0357
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:734d471faeec407e8b816d04385e0357
record_format dspace
spelling oai:doaj.org-article:734d471faeec407e8b816d04385e03572021-12-05T14:10:52ZResolving resolution dimensions in triangulated categories2391-545510.1515/math-2021-0013https://doaj.org/article/734d471faeec407e8b816d04385e03572021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0013https://doaj.org/toc/2391-5455Let T{\mathcal{T}} be a triangulated category with a proper class ξ\xi of triangles and X{\mathcal{X}} be a subcategory of T{\mathcal{T}}. We first introduce the notion of X{\mathcal{X}}-resolution dimensions for a resolving subcategory of T{\mathcal{T}} and then give some descriptions of objects having finite X{\mathcal{X}}-resolution dimensions. In particular, we obtain Auslander-Buchweitz approximations for these objects. As applications, we construct adjoint pairs for two kinds of inclusion functors and characterize objects having finite X{\mathcal{X}}-resolution dimensions in terms of a notion of ξ\xi -cellular towers. We also construct a new resolving subcategory from a given resolving subcategory and reformulate some known results.Ma XinZhao TiweiDe Gruyterarticletriangulated categoriesa proper class of trianglesresolving resolution dimensionsresolving subcategoriesauslander-buchweitz approximations18g2018g2518g10MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 121-143 (2021)
institution DOAJ
collection DOAJ
language EN
topic triangulated categories
a proper class of triangles
resolving resolution dimensions
resolving subcategories
auslander-buchweitz approximations
18g20
18g25
18g10
Mathematics
QA1-939
spellingShingle triangulated categories
a proper class of triangles
resolving resolution dimensions
resolving subcategories
auslander-buchweitz approximations
18g20
18g25
18g10
Mathematics
QA1-939
Ma Xin
Zhao Tiwei
Resolving resolution dimensions in triangulated categories
description Let T{\mathcal{T}} be a triangulated category with a proper class ξ\xi of triangles and X{\mathcal{X}} be a subcategory of T{\mathcal{T}}. We first introduce the notion of X{\mathcal{X}}-resolution dimensions for a resolving subcategory of T{\mathcal{T}} and then give some descriptions of objects having finite X{\mathcal{X}}-resolution dimensions. In particular, we obtain Auslander-Buchweitz approximations for these objects. As applications, we construct adjoint pairs for two kinds of inclusion functors and characterize objects having finite X{\mathcal{X}}-resolution dimensions in terms of a notion of ξ\xi -cellular towers. We also construct a new resolving subcategory from a given resolving subcategory and reformulate some known results.
format article
author Ma Xin
Zhao Tiwei
author_facet Ma Xin
Zhao Tiwei
author_sort Ma Xin
title Resolving resolution dimensions in triangulated categories
title_short Resolving resolution dimensions in triangulated categories
title_full Resolving resolution dimensions in triangulated categories
title_fullStr Resolving resolution dimensions in triangulated categories
title_full_unstemmed Resolving resolution dimensions in triangulated categories
title_sort resolving resolution dimensions in triangulated categories
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/734d471faeec407e8b816d04385e0357
work_keys_str_mv AT maxin resolvingresolutiondimensionsintriangulatedcategories
AT zhaotiwei resolvingresolutiondimensionsintriangulatedcategories
_version_ 1718371647490097152