Cross-Linking With Diamine Monomers to Prepare Graphene Oxide Composite Membranes With Varying D-Spacing for Enhanced Desalination Properties
As a new type of membrane material, graphene oxide (GO) can easily form sub-nanometer interlayer channels, which can effectively screen salt ions. The composite membrane and structure with a high water flux and good ion rejection rate were compared by the cross-linking of GO with three different dia...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/735bfa90e5a24d4f8fba174a23496eac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | As a new type of membrane material, graphene oxide (GO) can easily form sub-nanometer interlayer channels, which can effectively screen salt ions. The composite membrane and structure with a high water flux and good ion rejection rate were compared by the cross-linking of GO with three different diamine monomers: ethylenediamine (EDA), urea (UR), and p-phenylenediamine (PPD). X-ray photoelectron spectroscopy (XPS) results showed that unmodified GO mainly comprises π-π interactions and hydrogen bonds, but after crosslinking with diamine, both GO and mixed cellulose (MCE) membranes are chemically bonded to the diamine. The GO-UR/MCE membrane achieved a water flux similar to the original GO membrane, while the water flux of GO-PPD/MCE and GO-EDA/MCE dropped. X-ray diffraction results demonstrated that the covalent bond between GO and diamine can effectively inhibit the extension of d-spacing during the transition between dry and wet states. The separation performance of the GO-UR/MCE membrane was the best. GO-PPD/MCE had the largest contact angle and the worst hydrophilicity, but its water flux was still greater than GO-EDA/MCE. This result indicated that the introduction of different functional groups during the diamine monomer cross-linking of GO caused some changes in the performance structure of the membrane. |
---|