A performance evaluation of despiking algorithms for eddy covariance data
Abstract Spike detection for raw high-frequency eddy covariance time series is a challenging task because of the confounding effect caused by complex dynamics and the high level of noise affecting such data. To cope with these features, a new despiking procedure rooted on robust functionals is propo...
Guardado en:
Autor principal: | Domenico Vitale |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7361c001b1744767830e81224e7e4aac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
por: Gilberto Pastorello, et al.
Publicado: (2021) -
Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests
por: M. Campioli, et al.
Publicado: (2016) -
Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe
por: T. Karl, et al.
Publicado: (2017) -
Evaporation and CO2 fluxes in a coastal reef: an eddy covariance approach
por: A. Camilo Rey-Sánchez, et al.
Publicado: (2017) -
Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge.
por: Sara Mostafavi, et al.
Publicado: (2013)