Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
Semantic segmentation for high-resolution remote-sensing imagery (HRRSI) has become increasingly popular in machine vision in recent years. Most of the state-of-the-art methods for semantic segmentation of HRRSI usually emphasize the strong learning ability of deep convolutional neural network to mo...
Guardado en:
Autores principales: | Bo Zhong, Jiang Du, Minghao Liu, Aixia Yang, Junjun Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/736ce94b04cd48859056be59ab0de43a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) -
A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
por: Saüc Abadal, et al.
Publicado: (2021) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
por: Wenjie Zi, et al.
Publicado: (2021) -
Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data
por: Ji Won Suh, et al.
Publicado: (2021) -
Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote Sensing Based on Improved Semantic Segmentation Model
por: Yubin Lan, et al.
Publicado: (2021)