Sharing the load: How a personally coloured calculator for grapheme-colour synaesthetes can reduce processing costs.

Synaesthesia refers to a diverse group of perceptions. These unusual perceptions are defined by the experience of concurrents; these are conscious experiences that are catalysed by attention to some normally unrelated stimulus, the inducer. In grapheme-colour synaesthesia numbers, letters, and words...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joshua J Berger, Irina M Harris, Karen M Whittingham, Zoe Terpening, John D G Watson
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7370d4cc4bf84a86b1946bdba6879687
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Synaesthesia refers to a diverse group of perceptions. These unusual perceptions are defined by the experience of concurrents; these are conscious experiences that are catalysed by attention to some normally unrelated stimulus, the inducer. In grapheme-colour synaesthesia numbers, letters, and words can all cause colour concurrents, and these are independent of the actual colour with which the graphemes are displayed. For example, when seeing the numeral '3' a person with synaesthesia might experience green as the concurrent irrespective of whether the numeral is printed in blue, black, or red. As a trait, synaesthesia has the potential to cause both positive and negative effects. However, regardless of the end effect, synaesthesia incurs an initial cost when compared with its equivalent example from normal perception; this is the additional processing cost needed to generate the information on the concurrent. We contend that this cost can be reduced by mirroring the concurrent in the environment. We designed the Digital-Colour Calculator (DCC) app, allowing each user to personalise and select the colours with which it displays its digits; it is the first reported example of a device/approach that leverages the concurrent. In this article we report on the reactions to the DCC for a sample of fifty-three synaesthetes and thirty-five non-synaesthetes. The synaesthetes showed a strong preference for the DCC over its normal counterpart. The non-synaesthetes showed no obvious preference. When using the DCC a subsample of the synaesthete group showed consistent improvement in task speed (around 8%) whereas no synaesthete showed a decrement in their speed.