The atmospheric model of neural networks based on the improved Levenberg-Marquardt algorithm
Traditional atmospheric models are based on the analysis and fitting of various factors influencing the space atmosphere density. Neural network models do not specifically analyze the polynomials of each influencing factor in the atmospheric model, but use large data sets for network construction. T...
Guardado en:
Autores principales: | Cui Wenhui, Qu Wei, Jiang Min, Yao Gang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73725b7e13e84cff8a06a8201f0566ca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid
por: Jawaher Lafi Aljohani, et al.
Publicado: (2021) -
Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer
por: Muhammad Shoaib, et al.
Publicado: (2022) -
Numerical Investigations through ANNs for Solving COVID-19 Model
por: Muhammad Umar, et al.
Publicado: (2021) -
The assessment of Levenberg–Marquardt and Bayesian Framework training algorithm for prediction of concrete shrinkage by the artificial neural network
por: Hosein Garoosiha, et al.
Publicado: (2019) -
Automatic Detection of Atmospherics and Tweek Atmospherics in Radio Spectrograms Based on a Deep Learning Approach
por: Viera Maslej‐Krešňáková, et al.
Publicado: (2021)