Solving Stance Detection on Tweets as Multi-Domain and Multi-Task Text Classification
Stance detection on tweets aims at classifying the attitude of tweets towards given targets. Existing work leverage attention-based models to learn target-aware stance representations. While those methods achieve substantial success, most of them usually train a model for each target separately desp...
Enregistré dans:
Auteurs principaux: | Limin Wang, Dexin Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/738e07e8d23f47aaa75282cd5a4ed1c3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Buzz Tweet Classification Based on Text and Image Features of Tweets Using Multi-Task Learning
par: Reishi Amitani, et autres
Publié: (2021) -
Multi-Ideology ISIS/Jihadist White Supremacist (MIWS) Dataset for Multi-Class Extremism Text Classification
par: Mayur Gaikwad, et autres
Publié: (2021) -
A Hybrid Deep Learning Technique for Personality Trait Classification From Text
par: Hussain Ahmad, et autres
Publié: (2021) -
Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
par: Ruba Obiedat, et autres
Publié: (2021) -
Targeted Aspect-Based Multimodal Sentiment Analysis: An Attention Capsule Extraction and Multi-Head Fusion Network
par: Donghong Gu, et autres
Publié: (2021)