Weak and strong estimates for linear and multilinear fractional Hausdorff operators on the Heisenberg group
This paper is devoted to the weak and strong estimates for the linear and multilinear fractional Hausdorff operators on the Heisenberg group Hn{{\mathbb{H}}}^{n}. A sharp strong estimate for TΦm{T}_{\Phi }^{m} is obtained. As an application, we derive the sharp constant for the product Hardy operato...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/738fb1d41eae4d17ba199fe5595620a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper is devoted to the weak and strong estimates for the linear and multilinear fractional Hausdorff operators on the Heisenberg group Hn{{\mathbb{H}}}^{n}. A sharp strong estimate for TΦm{T}_{\Phi }^{m} is obtained. As an application, we derive the sharp constant for the product Hardy operator on Hn{{\mathbb{H}}}^{n}. Some weak-type (p,q)\left(p,q)
(1≤p≤∞)\left(1\le p\le \infty ) estimates for TΦ,β{T}_{\Phi ,\beta } are also obtained. As applications, we calculate some sharp weak constants for the fractional Hausdorff operator on the Heisenberg group. Besides, we give an explicit weak estimate for TΦ,β→m{T}_{\Phi ,\overrightarrow{\beta }}^{m} under some mild assumptions on Φ\Phi . We extend the results of Guo et al. [Hausdorff operators on the Heisenberg group, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 11, 1703–1714] to the fractional setting. |
---|