Prediction of Pancreatic Neuroendocrine Tumor Grading Risk Based on Quantitative Radiomic Analysis of MR
BackgroundPancreatic neuroendocrine tumors (PNETs) grade is very important for treatment strategy of PNETs. The present study aimed to find the quantitative radiomic features for predicting grades of PNETs in MR images.Materials and MethodsTotally 48 patients but 51 lesions with a pathological tumor...
Guardado en:
Autores principales: | Wei Li, Chao Xu, Zhaoxiang Ye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/739d9592cfaf48daa909e022f734d747 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A CT-Based Radiomics Nomogram Integrated With Clinic-Radiological Features for Preoperatively Predicting WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma
por: Yingjie Xv, et al.
Publicado: (2021) -
Ramucirumab in combination with dacarbazine in patients with progressive well-differentiated metastatic pancreatic neuroendocrine tumors (RamuNET): study protocol for a multicenter single-arm trial
por: Sebastian Krug, et al.
Publicado: (2021) -
Comparison of Conventional and Radiomic Features between <sup>18</sup>F-FBPA PET/CT and PET/MR
por: Chien-Yi Liao, et al.
Publicado: (2021) -
Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas
por: Yutao Wang, et al.
Publicado: (2021) -
Radiomics Models for Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Radiomics Quality Score Assessment
por: Qiang Wang, et al.
Publicado: (2021)