Model-size reduction for reservoir computing by concatenating internal states through time
Abstract Reservoir computing (RC) is a machine learning algorithm that can learn complex time series from data very rapidly based on the use of high-dimensional dynamical systems, such as random networks of neurons, called “reservoirs.” To implement RC in edge computing, it is highly important to re...
Guardado en:
Autores principales: | Yusuke Sakemi, Kai Morino, Timothée Leleu, Kazuyuki Aihara |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/739fe033c48f4169b1048236ff7c25e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DYNAMIC REGIMES OF ASYNCHRONOUS MOTORS WITH CONCATENATED CAPACITORS
por: V. S. Malyar, et al.
Publicado: (2015) -
Determining the current size and state of subvolcanic magma reservoirs
por: Gregor Weber, et al.
Publicado: (2020) -
Avoiding coherent errors with rotated concatenated stabilizer codes
por: Yingkai Ouyang
Publicado: (2021) -
PacBio sequencing output increased through uniform and directional fivefold concatenation
por: Nisha Kanwar, et al.
Publicado: (2021) -
Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks
por: Jie Deng, et al.
Publicado: (2021)