High fidelity blood flow in a patient-specific arteriovenous fistula

Abstract An arteriovenous fistula, created by artificially connecting segments of a patient’s vasculature, is the preferred way to gain access to the bloodstream for kidney dialysis. The increasing power and availability of supercomputing infrastructure means that it is becoming more realistic to us...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. W. S. McCullough, P. V. Coveney
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/73af98419d6846039de28a8f7d17c651
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:73af98419d6846039de28a8f7d17c651
record_format dspace
spelling oai:doaj.org-article:73af98419d6846039de28a8f7d17c6512021-11-21T12:23:16ZHigh fidelity blood flow in a patient-specific arteriovenous fistula10.1038/s41598-021-01435-82045-2322https://doaj.org/article/73af98419d6846039de28a8f7d17c6512021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01435-8https://doaj.org/toc/2045-2322Abstract An arteriovenous fistula, created by artificially connecting segments of a patient’s vasculature, is the preferred way to gain access to the bloodstream for kidney dialysis. The increasing power and availability of supercomputing infrastructure means that it is becoming more realistic to use simulations to help identify the best type and location of a fistula for a specific patient. We describe a 3D fistula model that uses the lattice Boltzmann method to simultaneously resolve blood flow in patient-specific arteries and veins. The simulations conducted here, comprising vasculatures of the whole forearm, demonstrate qualified validation against clinical data. Ongoing research to further encompass complex biophysics on realistic time scales will permit the use of human-scale physiological models for basic and clinical medicine.J. W. S. McCulloughP. V. CoveneyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
J. W. S. McCullough
P. V. Coveney
High fidelity blood flow in a patient-specific arteriovenous fistula
description Abstract An arteriovenous fistula, created by artificially connecting segments of a patient’s vasculature, is the preferred way to gain access to the bloodstream for kidney dialysis. The increasing power and availability of supercomputing infrastructure means that it is becoming more realistic to use simulations to help identify the best type and location of a fistula for a specific patient. We describe a 3D fistula model that uses the lattice Boltzmann method to simultaneously resolve blood flow in patient-specific arteries and veins. The simulations conducted here, comprising vasculatures of the whole forearm, demonstrate qualified validation against clinical data. Ongoing research to further encompass complex biophysics on realistic time scales will permit the use of human-scale physiological models for basic and clinical medicine.
format article
author J. W. S. McCullough
P. V. Coveney
author_facet J. W. S. McCullough
P. V. Coveney
author_sort J. W. S. McCullough
title High fidelity blood flow in a patient-specific arteriovenous fistula
title_short High fidelity blood flow in a patient-specific arteriovenous fistula
title_full High fidelity blood flow in a patient-specific arteriovenous fistula
title_fullStr High fidelity blood flow in a patient-specific arteriovenous fistula
title_full_unstemmed High fidelity blood flow in a patient-specific arteriovenous fistula
title_sort high fidelity blood flow in a patient-specific arteriovenous fistula
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/73af98419d6846039de28a8f7d17c651
work_keys_str_mv AT jwsmccullough highfidelitybloodflowinapatientspecificarteriovenousfistula
AT pvcoveney highfidelitybloodflowinapatientspecificarteriovenousfistula
_version_ 1718419072539951104