Single-cell RNA-seq denoising using a deep count autoencoder

Single-cell RNA sequencing is a powerful method to study gene expression, but noise in the data can obstruct analysis. Here the authors develop a denoising method based on a deep count autoencoder network that scales linearly with the number of cells, and therefore is compatible with large data sets...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gökcen Eraslan, Lukas M. Simon, Maria Mircea, Nikola S. Mueller, Fabian J. Theis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/73b3655c613540088d10c72597ba8d71
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:73b3655c613540088d10c72597ba8d71
record_format dspace
spelling oai:doaj.org-article:73b3655c613540088d10c72597ba8d712021-12-02T17:02:18ZSingle-cell RNA-seq denoising using a deep count autoencoder10.1038/s41467-018-07931-22041-1723https://doaj.org/article/73b3655c613540088d10c72597ba8d712019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07931-2https://doaj.org/toc/2041-1723Single-cell RNA sequencing is a powerful method to study gene expression, but noise in the data can obstruct analysis. Here the authors develop a denoising method based on a deep count autoencoder network that scales linearly with the number of cells, and therefore is compatible with large data sets.Gökcen EraslanLukas M. SimonMaria MirceaNikola S. MuellerFabian J. TheisNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Gökcen Eraslan
Lukas M. Simon
Maria Mircea
Nikola S. Mueller
Fabian J. Theis
Single-cell RNA-seq denoising using a deep count autoencoder
description Single-cell RNA sequencing is a powerful method to study gene expression, but noise in the data can obstruct analysis. Here the authors develop a denoising method based on a deep count autoencoder network that scales linearly with the number of cells, and therefore is compatible with large data sets.
format article
author Gökcen Eraslan
Lukas M. Simon
Maria Mircea
Nikola S. Mueller
Fabian J. Theis
author_facet Gökcen Eraslan
Lukas M. Simon
Maria Mircea
Nikola S. Mueller
Fabian J. Theis
author_sort Gökcen Eraslan
title Single-cell RNA-seq denoising using a deep count autoencoder
title_short Single-cell RNA-seq denoising using a deep count autoencoder
title_full Single-cell RNA-seq denoising using a deep count autoencoder
title_fullStr Single-cell RNA-seq denoising using a deep count autoencoder
title_full_unstemmed Single-cell RNA-seq denoising using a deep count autoencoder
title_sort single-cell rna-seq denoising using a deep count autoencoder
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/73b3655c613540088d10c72597ba8d71
work_keys_str_mv AT gokceneraslan singlecellrnaseqdenoisingusingadeepcountautoencoder
AT lukasmsimon singlecellrnaseqdenoisingusingadeepcountautoencoder
AT mariamircea singlecellrnaseqdenoisingusingadeepcountautoencoder
AT nikolasmueller singlecellrnaseqdenoisingusingadeepcountautoencoder
AT fabianjtheis singlecellrnaseqdenoisingusingadeepcountautoencoder
_version_ 1718381912210276352