Single-cell RNA-seq denoising using a deep count autoencoder
Single-cell RNA sequencing is a powerful method to study gene expression, but noise in the data can obstruct analysis. Here the authors develop a denoising method based on a deep count autoencoder network that scales linearly with the number of cells, and therefore is compatible with large data sets...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73b3655c613540088d10c72597ba8d71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:73b3655c613540088d10c72597ba8d71 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:73b3655c613540088d10c72597ba8d712021-12-02T17:02:18ZSingle-cell RNA-seq denoising using a deep count autoencoder10.1038/s41467-018-07931-22041-1723https://doaj.org/article/73b3655c613540088d10c72597ba8d712019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07931-2https://doaj.org/toc/2041-1723Single-cell RNA sequencing is a powerful method to study gene expression, but noise in the data can obstruct analysis. Here the authors develop a denoising method based on a deep count autoencoder network that scales linearly with the number of cells, and therefore is compatible with large data sets.Gökcen EraslanLukas M. SimonMaria MirceaNikola S. MuellerFabian J. TheisNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Gökcen Eraslan Lukas M. Simon Maria Mircea Nikola S. Mueller Fabian J. Theis Single-cell RNA-seq denoising using a deep count autoencoder |
description |
Single-cell RNA sequencing is a powerful method to study gene expression, but noise in the data can obstruct analysis. Here the authors develop a denoising method based on a deep count autoencoder network that scales linearly with the number of cells, and therefore is compatible with large data sets. |
format |
article |
author |
Gökcen Eraslan Lukas M. Simon Maria Mircea Nikola S. Mueller Fabian J. Theis |
author_facet |
Gökcen Eraslan Lukas M. Simon Maria Mircea Nikola S. Mueller Fabian J. Theis |
author_sort |
Gökcen Eraslan |
title |
Single-cell RNA-seq denoising using a deep count autoencoder |
title_short |
Single-cell RNA-seq denoising using a deep count autoencoder |
title_full |
Single-cell RNA-seq denoising using a deep count autoencoder |
title_fullStr |
Single-cell RNA-seq denoising using a deep count autoencoder |
title_full_unstemmed |
Single-cell RNA-seq denoising using a deep count autoencoder |
title_sort |
single-cell rna-seq denoising using a deep count autoencoder |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/73b3655c613540088d10c72597ba8d71 |
work_keys_str_mv |
AT gokceneraslan singlecellrnaseqdenoisingusingadeepcountautoencoder AT lukasmsimon singlecellrnaseqdenoisingusingadeepcountautoencoder AT mariamircea singlecellrnaseqdenoisingusingadeepcountautoencoder AT nikolasmueller singlecellrnaseqdenoisingusingadeepcountautoencoder AT fabianjtheis singlecellrnaseqdenoisingusingadeepcountautoencoder |
_version_ |
1718381912210276352 |