Single-cell RNA-seq denoising using a deep count autoencoder
Single-cell RNA sequencing is a powerful method to study gene expression, but noise in the data can obstruct analysis. Here the authors develop a denoising method based on a deep count autoencoder network that scales linearly with the number of cells, and therefore is compatible with large data sets...
Guardado en:
Autores principales: | Gökcen Eraslan, Lukas M. Simon, Maria Mircea, Nikola S. Mueller, Fabian J. Theis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73b3655c613540088d10c72597ba8d71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021) -
A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
por: Zixiang Luo, et al.
Publicado: (2021) -
Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
por: Tian Tian, et al.
Publicado: (2021) -
Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
por: Jiarui Ding, et al.
Publicado: (2021) -
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
por: Xiangjie Li, et al.
Publicado: (2020)