Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis
Abstract Lacunarity, a quantitative morphological measure of how shapes fill space, and fractal dimension, a morphological measure of the complexity of pixel arrangement, have shown relationships with outcome across a variety of cancers. However, the application of these metrics to glioblastoma (GBM...
Guardado en:
Autores principales: | Lee Curtin, Paula Whitmire, Haylye White, Kamila M. Bond, Maciej M. Mrugala, Leland S. Hu, Kristin R. Swanson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73ba47c006284393a3b1eb8368e28ba3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
por: Leland S. Hu, et al.
Publicado: (2021) -
Comprehensive analysis of expression, prognosis and immune infiltration for TIMPs in glioblastoma
por: Jinkun Han, et al.
Publicado: (2021) -
The white matter is a pro-differentiative niche for glioblastoma
por: Lucy J. Brooks, et al.
Publicado: (2021) -
Enabling thin-film transistor technologies and the device metrics that matter
por: Alexandra F. Paterson, et al.
Publicado: (2018) -
Novel Methylation Biomarkers for Colorectal Cancer Prognosis
por: Alvaro Gutierrez, et al.
Publicado: (2021)