Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
Abstract The use of convolutional neural networks (CNNs) has dramatically advanced our ability to recognize images with machine learning methods. We aimed to construct a CNN that could recognize the anatomical location of esophagogastroduodenoscopy (EGD) images in an appropriate manner. A CNN-based...
Guardado en:
Autores principales: | Hirotoshi Takiyama, Tsuyoshi Ozawa, Soichiro Ishihara, Mitsuhiro Fujishiro, Satoki Shichijo, Shuhei Nomura, Motoi Miura, Tomohiro Tada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73bf6b140e564453a3cc9dc41b8d0606 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic classification of medical image modality and anatomical location using convolutional neural network.
por: Chen-Hua Chiang, et al.
Publicado: (2021) -
Diagnostic yield of esophagogastroduodenoscopy, colonoscopy, and small bowel endoscopy in Thai adults with chronic diarrhea
por: Julajak Limsrivilai, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
por: Xavier P. Burgos-Artizzu, et al.
Publicado: (2020) -
Deep Graph Convolutional Networks for Accurate Automatic Road Network Selection
por: Jing Zheng, et al.
Publicado: (2021)