Inverse design of grating couplers using the policy gradient method from reinforcement learning
We present a proof-of-concept technique for the inverse design of electromagnetic devices motivated by the policy gradient method in reinforcement learning, named PHORCED (PHotonic Optimization using REINFORCE Criteria for Enhanced Design). This technique uses a probabilistic generative neural netwo...
Guardado en:
Autores principales: | Hooten Sean, Beausoleil Raymond G., Van Vaerenbergh Thomas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73c23020fca646c58959e509beee6f4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
A mixture-density-based tandem optimization network for on-demand inverse design of thin-film high reflectors
por: Unni Rohit, et al.
Publicado: (2021) -
Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
por: Abdikarim Mohamed Ibrahim, et al.
Publicado: (2021) -
Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Laila Muizniece, et al.
Publicado: (2021) -
Corrigendum: Reinforcement Learning to Improve Image-Guidance of Ablation Therapy for Atrial Fibrillation
por: Laila Muizniece, et al.
Publicado: (2021)