Identification of Block-Structured Covariance Matrix on an Example of Metabolomic Data
Modern investigation techniques (e.g., metabolomic, proteomic, lipidomic, genomic, transcriptomic, phenotypic), allow to collect high-dimensional data, where the number of observations is smaller than the number of features. In such cases, for statistical analyzing, standard methods cannot be applie...
Enregistré dans:
Auteurs principaux: | Adam Mieldzioc, Monika Mokrzycka, Aneta Sawikowska |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/73c315c0f9af43f1b48a7627fe433471 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
par: Wenjuan Ren, et autres
Publié: (2021) -
A computational method for the covariance matrix associated with extracellular diffusivity on disordered models of cylindrical brain axons
par: Daniel Cervantes, et autres
Publié: (2021) -
An upper bound on the largest signless Laplacian of an odd unicyclic graph
par: Collao,Macarena, et autres
Publié: (2012) -
AN IMPROVED TOPOLOGICAL DESCRIPTOR EDm AND ITS APPLICATION
par: NIE,CHANGMING, et autres
Publié: (2012) -
A Novel Clutter Covariance Matrix Estimation Method Based on Feature Subspace for Space-Based Early Warning Radar
par: Tianfu Zhang, et autres
Publié: (2021)