A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor
Abstract Steep-slope transistors allow to scale down the supply voltage and the energy per computed bit of information as compared to conventional field-effect transistors (FETs), due to their sub-60 mV/decade subthreshold swing at room temperature. Currently pursued approaches to achieve such a sub...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73ca29e6befb407bb05995e0d2252883 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:73ca29e6befb407bb05995e0d2252883 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:73ca29e6befb407bb05995e0d22528832021-12-02T11:52:40ZA Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor10.1038/s41598-017-00359-62045-2322https://doaj.org/article/73ca29e6befb407bb05995e0d22528832017-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00359-6https://doaj.org/toc/2045-2322Abstract Steep-slope transistors allow to scale down the supply voltage and the energy per computed bit of information as compared to conventional field-effect transistors (FETs), due to their sub-60 mV/decade subthreshold swing at room temperature. Currently pursued approaches to achieve such a subthermionic subthreshold swing consist in alternative carrier injection mechanisms, like quantum mechanical band-to-band tunneling (BTBT) in Tunnel FETs or abrupt phase-change in metal-insulator transition (MIT) devices. The strengths of the BTBT and MIT have been combined in a hybrid device architecture called phase-change tunnel FET (PC-TFET), in which the abrupt MIT in vanadium dioxide (VO2) lowers the subthreshold swing of strained-silicon nanowire TFETs. In this work, we demonstrate that the principle underlying the low swing in the PC-TFET relates to a sub-unity body factor achieved by an internal differential gate voltage amplification. We study the effect of temperature on the switching ratio and the swing of the PC-TFET, reporting values as low as 4.0 mV/decade at 25 °C, 7.8 mV/decade at 45 °C. We discuss how the unique characteristics of the PC-TFET open new perspectives, beyond FETs and other steep-slope transistors, for low power electronics, analog circuits and neuromorphic computing.Wolfgang A. VitaleEmanuele A. CasuArnab BiswasTeodor RoscaCem AlperAnna KrammerGia V. LuongQing-T. ZhaoSiegfried MantlAndreas SchülerA. M. IonescuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Wolfgang A. Vitale Emanuele A. Casu Arnab Biswas Teodor Rosca Cem Alper Anna Krammer Gia V. Luong Qing-T. Zhao Siegfried Mantl Andreas Schüler A. M. Ionescu A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor |
description |
Abstract Steep-slope transistors allow to scale down the supply voltage and the energy per computed bit of information as compared to conventional field-effect transistors (FETs), due to their sub-60 mV/decade subthreshold swing at room temperature. Currently pursued approaches to achieve such a subthermionic subthreshold swing consist in alternative carrier injection mechanisms, like quantum mechanical band-to-band tunneling (BTBT) in Tunnel FETs or abrupt phase-change in metal-insulator transition (MIT) devices. The strengths of the BTBT and MIT have been combined in a hybrid device architecture called phase-change tunnel FET (PC-TFET), in which the abrupt MIT in vanadium dioxide (VO2) lowers the subthreshold swing of strained-silicon nanowire TFETs. In this work, we demonstrate that the principle underlying the low swing in the PC-TFET relates to a sub-unity body factor achieved by an internal differential gate voltage amplification. We study the effect of temperature on the switching ratio and the swing of the PC-TFET, reporting values as low as 4.0 mV/decade at 25 °C, 7.8 mV/decade at 45 °C. We discuss how the unique characteristics of the PC-TFET open new perspectives, beyond FETs and other steep-slope transistors, for low power electronics, analog circuits and neuromorphic computing. |
format |
article |
author |
Wolfgang A. Vitale Emanuele A. Casu Arnab Biswas Teodor Rosca Cem Alper Anna Krammer Gia V. Luong Qing-T. Zhao Siegfried Mantl Andreas Schüler A. M. Ionescu |
author_facet |
Wolfgang A. Vitale Emanuele A. Casu Arnab Biswas Teodor Rosca Cem Alper Anna Krammer Gia V. Luong Qing-T. Zhao Siegfried Mantl Andreas Schüler A. M. Ionescu |
author_sort |
Wolfgang A. Vitale |
title |
A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor |
title_short |
A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor |
title_full |
A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor |
title_fullStr |
A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor |
title_full_unstemmed |
A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor |
title_sort |
steep-slope transistor combining phase-change and band-to-band-tunneling to achieve a sub-unity body factor |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/73ca29e6befb407bb05995e0d2252883 |
work_keys_str_mv |
AT wolfgangavitale asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT emanueleacasu asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT arnabbiswas asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT teodorrosca asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT cemalper asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT annakrammer asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT giavluong asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT qingtzhao asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT siegfriedmantl asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT andreasschuler asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT amionescu asteepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT wolfgangavitale steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT emanueleacasu steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT arnabbiswas steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT teodorrosca steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT cemalper steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT annakrammer steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT giavluong steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT qingtzhao steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT siegfriedmantl steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT andreasschuler steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor AT amionescu steepslopetransistorcombiningphasechangeandbandtobandtunnelingtoachieveasubunitybodyfactor |
_version_ |
1718394991927099392 |