Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells
Wenjie Zhang,1,2 Zihui Li,3 Yan Liu,1,2 Dongxia Ye,4 Jinhua Li,3 Lianyi Xu,1,2 Bin Wei,1 Xiuli Zhang,2 Xuanyong Liu,3,* Xinquan Jiang,1,2,* 1Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Oral Bioengineering Labor...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73d5443ffbf64b2a996b68a82e2ea752 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:73d5443ffbf64b2a996b68a82e2ea752 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:73d5443ffbf64b2a996b68a82e2ea7522021-12-02T00:31:18ZBiofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells1176-91141178-2013https://doaj.org/article/73d5443ffbf64b2a996b68a82e2ea7522012-08-01T00:00:00Zhttp://www.dovepress.com/biofunctionalization-of-a-titanium-surface-with-a-nano-sawtooth-struct-a10676https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Wenjie Zhang,1,2 Zihui Li,3 Yan Liu,1,2 Dongxia Ye,4 Jinhua Li,3 Lianyi Xu,1,2 Bin Wei,1 Xiuli Zhang,2 Xuanyong Liu,3,* Xinquan Jiang,1,2,* 1Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 4Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China*Joint principal authors of this workBackground: The topography of an implant surface can serve as a powerful signaling cue for attached cells and can enhance the quality of osseointegration. A series of improved implant surfaces functionalized with nanoscale structures have been fabricated using various methods. Methods: In this study, using an H2O2 process, we fabricated two size-controllable sawtooth-like nanostructures with different dimensions on a titanium surface. The effects of the two nano-sawtooth structures on rat bone marrow mesenchymal stem cells (BMMSCs) were evaluated without the addition of osteoinductive chemical factors.Results: These new surface modifications did not adversely affect cell viability, and rat BMMSCs demonstrated a greater increase in proliferation ability on the surfaces of the nano-sawtooth structures than on a control plate. Furthermore, upregulated expression of osteogenic-related genes and proteins indicated that the nano-sawtooth structures promote osteoblastic differentiation of rat BMMSCs. Importantly, the large nano-sawtooth structure resulted in the greatest cell responses, including increased adhesion, proliferation, and differentiation.Conclusion: The enhanced adhesion, proliferation, and osteogenic differentiation abilities of rat BMMSCs on the nano-sawtooth structures suggest the potential to induce improvements in bone-titanium integration in vivo. Our study reveals the key role played by the nano-sawtooth structures on a titanium surface for the fate of rat BMMSCs and provides insights into the study of stem cell-nanostructure relationships and the related design of improved biomedical implant surfaces.Keywords: nanotechnology, surface modification, osteogenic differentiation, BMMSCs, implants, osseointegrationZhang WJLi ZHLiu YYe DXLi JHXu LYWei BZhang XLLiu XYJiang XQDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 4459-4472 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Zhang WJ Li ZH Liu Y Ye DX Li JH Xu LY Wei B Zhang XL Liu XY Jiang XQ Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells |
description |
Wenjie Zhang,1,2 Zihui Li,3 Yan Liu,1,2 Dongxia Ye,4 Jinhua Li,3 Lianyi Xu,1,2 Bin Wei,1 Xiuli Zhang,2 Xuanyong Liu,3,* Xinquan Jiang,1,2,* 1Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 4Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China*Joint principal authors of this workBackground: The topography of an implant surface can serve as a powerful signaling cue for attached cells and can enhance the quality of osseointegration. A series of improved implant surfaces functionalized with nanoscale structures have been fabricated using various methods. Methods: In this study, using an H2O2 process, we fabricated two size-controllable sawtooth-like nanostructures with different dimensions on a titanium surface. The effects of the two nano-sawtooth structures on rat bone marrow mesenchymal stem cells (BMMSCs) were evaluated without the addition of osteoinductive chemical factors.Results: These new surface modifications did not adversely affect cell viability, and rat BMMSCs demonstrated a greater increase in proliferation ability on the surfaces of the nano-sawtooth structures than on a control plate. Furthermore, upregulated expression of osteogenic-related genes and proteins indicated that the nano-sawtooth structures promote osteoblastic differentiation of rat BMMSCs. Importantly, the large nano-sawtooth structure resulted in the greatest cell responses, including increased adhesion, proliferation, and differentiation.Conclusion: The enhanced adhesion, proliferation, and osteogenic differentiation abilities of rat BMMSCs on the nano-sawtooth structures suggest the potential to induce improvements in bone-titanium integration in vivo. Our study reveals the key role played by the nano-sawtooth structures on a titanium surface for the fate of rat BMMSCs and provides insights into the study of stem cell-nanostructure relationships and the related design of improved biomedical implant surfaces.Keywords: nanotechnology, surface modification, osteogenic differentiation, BMMSCs, implants, osseointegration |
format |
article |
author |
Zhang WJ Li ZH Liu Y Ye DX Li JH Xu LY Wei B Zhang XL Liu XY Jiang XQ |
author_facet |
Zhang WJ Li ZH Liu Y Ye DX Li JH Xu LY Wei B Zhang XL Liu XY Jiang XQ |
author_sort |
Zhang WJ |
title |
Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells |
title_short |
Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells |
title_full |
Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells |
title_fullStr |
Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells |
title_full_unstemmed |
Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells |
title_sort |
biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells |
publisher |
Dove Medical Press |
publishDate |
2012 |
url |
https://doaj.org/article/73d5443ffbf64b2a996b68a82e2ea752 |
work_keys_str_mv |
AT zhangwj biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT lizh biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT liuy biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT yedx biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT lijh biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT xuly biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT weib biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT zhangxl biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT liuxy biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells AT jiangxq biofunctionalizationofatitaniumsurfacewithananosawtoothstructureregulatesthebehaviorofratbonemarrowmesenchymalstemcells |
_version_ |
1718403682548056064 |