Active learning to understand infectious disease models and improve policy making.
Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learni...
Guardado en:
Autores principales: | Lander Willem, Sean Stijven, Ekaterina Vladislavleva, Jan Broeckhove, Philippe Beutels, Niel Hens |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73f74cd4c41e4bc397be35bb27c6756d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Social contacts and mixing patterns relevant to the spread of infectious diseases.
por: Joël Mossong, et al.
Publicado: (2008) -
CoMix: comparing mixing patterns in the Belgian population during and after lockdown
por: Pietro Coletti, et al.
Publicado: (2020) -
Intersectionality and Policy-Making
por: Ekaterina Vorobeva
Publicado: (2019) -
The impact of contact tracing and household bubbles on deconfinement strategies for COVID-19
por: Lander Willem, et al.
Publicado: (2021) -
Gender-based violence and infectious disease in humanitarian settings: lessons learned from Ebola, Zika, and COVID-19 to inform syndemic policy making
por: Melissa Meinhart, et al.
Publicado: (2021)