Active learning to understand infectious disease models and improve policy making.
Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learni...
Enregistré dans:
Auteurs principaux: | Lander Willem, Sean Stijven, Ekaterina Vladislavleva, Jan Broeckhove, Philippe Beutels, Niel Hens |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/73f74cd4c41e4bc397be35bb27c6756d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Social contacts and mixing patterns relevant to the spread of infectious diseases.
par: Joël Mossong, et autres
Publié: (2008) -
CoMix: comparing mixing patterns in the Belgian population during and after lockdown
par: Pietro Coletti, et autres
Publié: (2020) -
Intersectionality and Policy-Making
par: Ekaterina Vorobeva
Publié: (2019) -
The impact of contact tracing and household bubbles on deconfinement strategies for COVID-19
par: Lander Willem, et autres
Publié: (2021) -
Gender-based violence and infectious disease in humanitarian settings: lessons learned from Ebola, Zika, and COVID-19 to inform syndemic policy making
par: Melissa Meinhart, et autres
Publié: (2021)