Tenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor
Semaphorin 4D (Sema4D) is a neurotrophin that is secreted by osteoclasts and binds to its receptor PlexinB1 on osteoblasts to inhibit their differentiation and function. Adenosine A2A activation inhibits osteoclast Sema4D-mediated secretion, diminishes inflammatory osteolysis and prevents bone loss...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73f8e5acad59435e9fc5b741753ed5da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:73f8e5acad59435e9fc5b741753ed5da |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:73f8e5acad59435e9fc5b741753ed5da2021-11-11T16:57:13ZTenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor10.3390/ijms2221114901422-00671661-6596https://doaj.org/article/73f8e5acad59435e9fc5b741753ed5da2021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11490https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Semaphorin 4D (Sema4D) is a neurotrophin that is secreted by osteoclasts and binds to its receptor PlexinB1 on osteoblasts to inhibit their differentiation and function. Adenosine A2A activation inhibits osteoclast Sema4D-mediated secretion, diminishes inflammatory osteolysis and prevents bone loss following tenofovir (one of the most used antivirals in HIV). Therefore, tenofovir might activate Sema4D signaling to alter bone turnover. Female C57Bl/6/A2AKO mice were ovariectomized and treated with saline (control), tenofovir 75 mg/Kg/day, dipyridamole 25 mg/Kg/day or a combination for 5 weeks and long bones were prepared for histology. Primary murine-induced osteoclast/osteoblast were challenged with tenofovir/dipyridamole 1 μM each, and the expression of Sema4D/PlexinB1, RhoA/ROCK/IGF1R was studied by RT-PCR, Western blot and immunostaining. In vivo tenofovir showed an increased expression of Sema4D when compared to control mice, and dipyridamole reverted the expression in an A2A-dependent manner. In vitro, tenofovir increases Sema4D expression and secretion in osteoclast precursors, and pre-treatment with dipyridamole reverted this effect. pRhoA and ROCK1 activation were increased and IRS1/IGF1R expression was diminished by tenofovir in the Vav3/ARHGAP18 mechanism in osteoblast precursors and reverted by dipyridamole in an A2A-dependent manner. This suggests that tenofovir increases bone loss by activation of Sema4D/PlexinB1 signaling, which inhibits osteoblast differentiation. Agents that increase local adenosine concentrations, such as dipyridamole, might prevent bone loss following the inhibition of this pathway.Patricia Llamas-GrandaLaura Martin-RodríguezRaquel LargoGabriel Herrero-BeaumontAránzazu MedieroMDPI AGarticleSema4Dtenofovirbone turnoverHIVadenosine A2A receptorosteoblastBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11490, p 11490 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Sema4D tenofovir bone turnover HIV adenosine A2A receptor osteoblast Biology (General) QH301-705.5 Chemistry QD1-999 |
spellingShingle |
Sema4D tenofovir bone turnover HIV adenosine A2A receptor osteoblast Biology (General) QH301-705.5 Chemistry QD1-999 Patricia Llamas-Granda Laura Martin-Rodríguez Raquel Largo Gabriel Herrero-Beaumont Aránzazu Mediero Tenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor |
description |
Semaphorin 4D (Sema4D) is a neurotrophin that is secreted by osteoclasts and binds to its receptor PlexinB1 on osteoblasts to inhibit their differentiation and function. Adenosine A2A activation inhibits osteoclast Sema4D-mediated secretion, diminishes inflammatory osteolysis and prevents bone loss following tenofovir (one of the most used antivirals in HIV). Therefore, tenofovir might activate Sema4D signaling to alter bone turnover. Female C57Bl/6/A2AKO mice were ovariectomized and treated with saline (control), tenofovir 75 mg/Kg/day, dipyridamole 25 mg/Kg/day or a combination for 5 weeks and long bones were prepared for histology. Primary murine-induced osteoclast/osteoblast were challenged with tenofovir/dipyridamole 1 μM each, and the expression of Sema4D/PlexinB1, RhoA/ROCK/IGF1R was studied by RT-PCR, Western blot and immunostaining. In vivo tenofovir showed an increased expression of Sema4D when compared to control mice, and dipyridamole reverted the expression in an A2A-dependent manner. In vitro, tenofovir increases Sema4D expression and secretion in osteoclast precursors, and pre-treatment with dipyridamole reverted this effect. pRhoA and ROCK1 activation were increased and IRS1/IGF1R expression was diminished by tenofovir in the Vav3/ARHGAP18 mechanism in osteoblast precursors and reverted by dipyridamole in an A2A-dependent manner. This suggests that tenofovir increases bone loss by activation of Sema4D/PlexinB1 signaling, which inhibits osteoblast differentiation. Agents that increase local adenosine concentrations, such as dipyridamole, might prevent bone loss following the inhibition of this pathway. |
format |
article |
author |
Patricia Llamas-Granda Laura Martin-Rodríguez Raquel Largo Gabriel Herrero-Beaumont Aránzazu Mediero |
author_facet |
Patricia Llamas-Granda Laura Martin-Rodríguez Raquel Largo Gabriel Herrero-Beaumont Aránzazu Mediero |
author_sort |
Patricia Llamas-Granda |
title |
Tenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor |
title_short |
Tenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor |
title_full |
Tenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor |
title_fullStr |
Tenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor |
title_full_unstemmed |
Tenofovir Modulates Semaphorin 4D Signaling and Regulates Bone Homeostasis, Which Can Be Counteracted by Dipyridamole and Adenosine A2A Receptor |
title_sort |
tenofovir modulates semaphorin 4d signaling and regulates bone homeostasis, which can be counteracted by dipyridamole and adenosine a2a receptor |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/73f8e5acad59435e9fc5b741753ed5da |
work_keys_str_mv |
AT patriciallamasgranda tenofovirmodulatessemaphorin4dsignalingandregulatesbonehomeostasiswhichcanbecounteractedbydipyridamoleandadenosinea2areceptor AT lauramartinrodriguez tenofovirmodulatessemaphorin4dsignalingandregulatesbonehomeostasiswhichcanbecounteractedbydipyridamoleandadenosinea2areceptor AT raquellargo tenofovirmodulatessemaphorin4dsignalingandregulatesbonehomeostasiswhichcanbecounteractedbydipyridamoleandadenosinea2areceptor AT gabrielherrerobeaumont tenofovirmodulatessemaphorin4dsignalingandregulatesbonehomeostasiswhichcanbecounteractedbydipyridamoleandadenosinea2areceptor AT aranzazumediero tenofovirmodulatessemaphorin4dsignalingandregulatesbonehomeostasiswhichcanbecounteractedbydipyridamoleandadenosinea2areceptor |
_version_ |
1718432184393531392 |