Spatial Covariance Modeling for Stochastic Subgrid‐Scale Parameterizations Using Dynamic Mode Decomposition
Abstract Stochastic parameterizations are increasingly being used in climate modeling to represent subgrid‐scale processes. While different parameterizations are being developed considering different aspects of the physical phenomena, less attention is given to technical and numerical aspects. In pa...
Guardado en:
Autores principales: | Federica Gugole, Christian L. E. Franzke |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/73fa82f776994ed5b2375a08d1d3e839 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multifluids for Representing Subgrid‐Scale Convection
por: Hilary Weller, et al.
Publicado: (2020) -
Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
por: F. H. Lambert, et al.
Publicado: (2020) -
Improving Convection Trigger Functions in Deep Convective Parameterization Schemes Using Machine Learning
por: Tao Zhang, et al.
Publicado: (2021) -
Linking Deep and Shallow Convective Mass Fluxes via an Assumed Entrainment Distribution in CAM5‐CLUBB: Parameterization and Simulated Precipitation Variability
por: Ben Yang, et al.
Publicado: (2021) -
Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models With Real‐Geography Boundary Conditions
por: Griffin Mooers, et al.
Publicado: (2021)