Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico
Kemp eliminases are artificial enzymes that catalyze the concerted deprotonation and ring-opening of benzisoxazoles. Here, the authors use room-temperature X-ray crystallography to investigate changes to the conformational ensemble of the Kemp eliminase HG3 along a directed evolutionary trajectory,...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7439f4de0efc41d198a2176b909a8ff0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Kemp eliminases are artificial enzymes that catalyze the concerted deprotonation and ring-opening of benzisoxazoles. Here, the authors use room-temperature X-ray crystallography to investigate changes to the conformational ensemble of the Kemp eliminase HG3 along a directed evolutionary trajectory, and develop an experimentally guided, ensemble-based computational enzyme design procedure. |
---|