Improved quantitative microbiome profiling for environmental antibiotic resistance surveillance

Abstract Background Understanding environmental microbiomes and antibiotic resistance (AR) is hindered by over reliance on relative abundance data from next-generation sequencing. Relative data limits our ability to quantify changes in microbiomes and resistomes over space and time because sequencin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amelie Ott, Marcos Quintela-Baluja, Andrew M. Zealand, Greg O’Donnell, Mohd Ridza Mohd Haniffah, David W. Graham
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/74485208c7914f9ba19f0eed31b17181
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Background Understanding environmental microbiomes and antibiotic resistance (AR) is hindered by over reliance on relative abundance data from next-generation sequencing. Relative data limits our ability to quantify changes in microbiomes and resistomes over space and time because sequencing depth is not considered and makes data less suitable for Quantitative Microbial Risk Assessments (QMRA), critical in quantifying environmental AR exposure and transmission risks. Results Here we combine quantitative microbiome profiling (QMP; parallelization of amplicon sequencing and 16S rRNA qPCR to estimate cell counts) and absolute resistome profiling (based on high-throughput qPCR) to quantify AR along an anthropogenically impacted river. We show QMP overcomes biases caused by relative taxa abundance data and show the benefits of using unified Hill number diversities to describe environmental microbial communities. Our approach overcomes weaknesses in previous methods and shows Hill numbers are better for QMP in diversity characterisation. Conclusions Methods here can be adapted for any microbiome and resistome research question, but especially providing more quantitative data for QMRA and other environmental applications.