Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development
Accurately estimating the six degree of freedom (6-DoF) pose of objects in images is essential for a variety of applications such as robotics, autonomous driving, and autonomous, AI, and vision-based navigation for unmanned aircraft systems (UAS). Developing such algorithms requires large datasets;...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7476e2bdc2be4673a55a67021b500c72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7476e2bdc2be4673a55a67021b500c72 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7476e2bdc2be4673a55a67021b500c722021-11-25T18:03:30ZAutomated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development10.3390/jimaging71102362313-433Xhttps://doaj.org/article/7476e2bdc2be4673a55a67021b500c722021-11-01T00:00:00Zhttps://www.mdpi.com/2313-433X/7/11/236https://doaj.org/toc/2313-433XAccurately estimating the six degree of freedom (6-DoF) pose of objects in images is essential for a variety of applications such as robotics, autonomous driving, and autonomous, AI, and vision-based navigation for unmanned aircraft systems (UAS). Developing such algorithms requires large datasets; however, generating those is tedious as it requires annotating the 6-DoF relative pose of each object of interest present in the image w.r.t. to the camera. Therefore, this work presents a novel approach that automates the data acquisition and annotation process and thus minimizes the annotation effort to the duration of the recording. To maximize the quality of the resulting annotations, we employ an optimization-based approach for determining the extrinsic calibration parameters of the camera. Our approach can handle multiple objects in the scene, automatically providing ground-truth labeling for each object and taking into account occlusion effects between different objects. Moreover, our approach can not only be used to generate data for 6-DoF pose estimation and corresponding 3D-models but can be also extended to automatic dataset generation for object detection, instance segmentation, or volume estimation for any kind of object.Javier Gibran Apud BacaThomas JantosMario TheuermannMohamed Amin HamdadJan SteinbrenerStephan WeissAlexander AlmerRoland PerkoMDPI AGarticle6-DoF relative pose estimationautomated data acquisitionAI-based navigation algorithmsUASPhotographyTR1-1050Computer applications to medicine. Medical informaticsR858-859.7Electronic computers. Computer scienceQA75.5-76.95ENJournal of Imaging, Vol 7, Iss 236, p 236 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
6-DoF relative pose estimation automated data acquisition AI-based navigation algorithms UAS Photography TR1-1050 Computer applications to medicine. Medical informatics R858-859.7 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
6-DoF relative pose estimation automated data acquisition AI-based navigation algorithms UAS Photography TR1-1050 Computer applications to medicine. Medical informatics R858-859.7 Electronic computers. Computer science QA75.5-76.95 Javier Gibran Apud Baca Thomas Jantos Mario Theuermann Mohamed Amin Hamdad Jan Steinbrener Stephan Weiss Alexander Almer Roland Perko Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development |
description |
Accurately estimating the six degree of freedom (6-DoF) pose of objects in images is essential for a variety of applications such as robotics, autonomous driving, and autonomous, AI, and vision-based navigation for unmanned aircraft systems (UAS). Developing such algorithms requires large datasets; however, generating those is tedious as it requires annotating the 6-DoF relative pose of each object of interest present in the image w.r.t. to the camera. Therefore, this work presents a novel approach that automates the data acquisition and annotation process and thus minimizes the annotation effort to the duration of the recording. To maximize the quality of the resulting annotations, we employ an optimization-based approach for determining the extrinsic calibration parameters of the camera. Our approach can handle multiple objects in the scene, automatically providing ground-truth labeling for each object and taking into account occlusion effects between different objects. Moreover, our approach can not only be used to generate data for 6-DoF pose estimation and corresponding 3D-models but can be also extended to automatic dataset generation for object detection, instance segmentation, or volume estimation for any kind of object. |
format |
article |
author |
Javier Gibran Apud Baca Thomas Jantos Mario Theuermann Mohamed Amin Hamdad Jan Steinbrener Stephan Weiss Alexander Almer Roland Perko |
author_facet |
Javier Gibran Apud Baca Thomas Jantos Mario Theuermann Mohamed Amin Hamdad Jan Steinbrener Stephan Weiss Alexander Almer Roland Perko |
author_sort |
Javier Gibran Apud Baca |
title |
Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development |
title_short |
Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development |
title_full |
Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development |
title_fullStr |
Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development |
title_full_unstemmed |
Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development |
title_sort |
automated data annotation for 6-dof ai-based navigation algorithm development |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/7476e2bdc2be4673a55a67021b500c72 |
work_keys_str_mv |
AT javiergibranapudbaca automateddataannotationfor6dofaibasednavigationalgorithmdevelopment AT thomasjantos automateddataannotationfor6dofaibasednavigationalgorithmdevelopment AT mariotheuermann automateddataannotationfor6dofaibasednavigationalgorithmdevelopment AT mohamedaminhamdad automateddataannotationfor6dofaibasednavigationalgorithmdevelopment AT jansteinbrener automateddataannotationfor6dofaibasednavigationalgorithmdevelopment AT stephanweiss automateddataannotationfor6dofaibasednavigationalgorithmdevelopment AT alexanderalmer automateddataannotationfor6dofaibasednavigationalgorithmdevelopment AT rolandperko automateddataannotationfor6dofaibasednavigationalgorithmdevelopment |
_version_ |
1718411686564593664 |