EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
Abstract Background A large number of biological studies have shown that miRNAs are inextricably linked to many complex diseases. Studying the miRNA-disease associations could provide us a root cause understanding of the underlying pathogenesis in which promotes the progress of drug development. How...
Guardado en:
Autores principales: | Shanchen Pang, Yu Zhuang, Xinzeng Wang, Fuyu Wang, Sibo Qiao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7478900349554ad7bdfbdd107802fd92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding
por: Junhui Chen, et al.
Publicado: (2021) -
Graph Embedding for Scholar Recommendation in Academic Social Networks
por: Chengzhe Yuan, et al.
Publicado: (2021) -
Knowledge Graph Embedding Technology: A Review
por: SHU Shitai, LI Song+, HAO Xiaohong, ZHANG Liping
Publicado: (2021) -
Markov Chain Neighborhood Sparse Preserving Graph Embedding Based on Tensor Factorization for Batch Process Monitoring
por: Xiaoqiang Zhao, et al.
Publicado: (2021) -
Graph Embedding Based Novel Gene Discovery Associated With Diabetes Mellitus
por: Jianzong Du, et al.
Publicado: (2021)