Ultra short time to Echo (UTE) MRI for cephalometric analysis-Potential of an x-ray free fast cephalometric projection technique.
<h4>Objectives</h4>A novel magnetic resonance imaging (MRI) scan protocol is presented on the basis of ultra-short time to echo (UTE). By this MRI cephalometric projections (MCPs) can be acquired without the need of post processing in one shot. Different technical parameterizations of th...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7484940d5b0b4fd48542fd795ce5a89c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | <h4>Objectives</h4>A novel magnetic resonance imaging (MRI) scan protocol is presented on the basis of ultra-short time to echo (UTE). By this MRI cephalometric projections (MCPs) can be acquired without the need of post processing in one shot. Different technical parameterizations of the protocol are performed. Their impact on the performance of MCPs is evaluated in comparison to the gold standard-the lateral cephalometric radiography (LCR) for cephalometric analysis (CA) in orthodontics.<h4>Methods</h4>Seven MCPs with various scan parameters influencing the scan duration and one LCR are used from one subject. 40 expert assessors performed CA for 14 predefined cephalometric landmarks. Relative metric distances and absolute angular measurements were calculated. Statistical analysis is presented and the deviations are highlighted to demonstrate the potential of the method for further analysis.<h4>Results</h4>The MCPs are acquired in 5-154 seconds, depending on resolution and contrast. Mean relative distances were 2.4-2.7 mm in MCPs and 1.6 mm in LCR, which demonstrate the accuracy and level of agreement of the expert assessors in identifying anatomical landmarks. In comparison to other studies, the presented MCP performed similar in angular analysis and demonstrated on average deviation of 1.2° ±1.1° in comparison to LCR. Despite the point articulare (Ar) and the related gonial angle the calculate distances and angles show outcomes in the range of ±2°/2mm.<h4>Conclusions</h4>MCPs can be acquired much faster in comparison to other techniques known from literature for CA. This study demonstrated the potential of the new method and showed first feasible results. Further research is needed to analyze the performance on a broad range of patients. |
---|